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High Performing Computing (HPC) is typically understood by

the general public as the computer solution of challenging and

outstanding problems with exceptional requirements in terms of

size, CPU time and data storage, using big and expensive super-

computing machines equipped with state of the art parallel comput- 

ing technology. HPC services have been so far mostly provided by

specialized national or regional governmental organizations that

host such powerful computers and are responsible for distributing

their supercomputing capacity among users under request.

This approach to HPC has resulted in the use of HPC facilities

mostly for research purposes in selected scientific areas.  As an

example, HPC is commonly used for the solution of complex

problems in computational physics and chemistry, such as weather

prediction, ADN studies and molecular dynamics simulations, just

to name a few.

The benefits of using HPC for engineering applica-tions are well

understood by companies and many initiatives for promoting HPC

in industry have been launched by the competent administrations. 

However, despite much effort and money invested, the fact is that,

with few exceptions,  the use of centralized or in-house supercom-

puting facilities by industry is very limited or null.  For instance,

while large automotive and aerospace companies have been using

HPC simulation for some time, most smaller enterprises in these

and other engineering sectors are much less experienced.  Without

the infrastructure and expertise to configure and manage a HPC

cluster, or the strive for interacting with a HPC service provider, the

barrier to entry can be too large, which discourages companies,

and also many research organizations, from taking the first step to

invest in a new technology.

My vision is that cloud computing may rapidly change the current

HPC paradigm. Cloud computing offers organizations a cost- 

effective platform to expand their computing capacity, or a way of

trying HPC on-demand before bringing a cluster in-house.  Cloud

computing can also  be used to provide burst capacity for users

equipped with a HPC system.  This relates not only to flexibility on

their current computing capacity, but also the ability to scale the

number of software licenses an organization is using.

Cloud computing services are already offered by different providers

and their use simplifies every day, as commercial software 

companies offer cloud computing as an option for using thecodes

via innovative SaaS and CaaS (software/computing as a service)

modes. These new computing services will surely have an 

impact  in the very near future on how research and industrial

organizations will choose to adopt cloud computing, continue to

invest in on premise hardware, or continue using the centralized

supercomputing infrastructures.

A note on recent IACM activities. The 13th World Congress on

Computational Mechanics (WCCM) held on 22-27 July 2018 in the

city of New York was a full success with some 3500 participants

from all over the world attending the gathering jointly organized with

the 2nd Pan American Congress on Computational Mechanics.

Congratulations to Prof Jacob Fish from Columbia University and

his team for an excellent organization of the congress.

The New York congress was also the occasion for the renewal of

several IACM officers of the Executive Council of the IACM, as 

listed on page 2 of this bulletin. Congratulations and best of luck to

the new IACM president Prof Antonio Huerta (Technical University

of Catalonia, Barcelona, Spain) and many thanks to the IACM 

officers stepping down from their positions for their work, in 

particular the past IACM president Prof Wing Kam Liu

(Northwestern University, US).

The countdown for WCCM 2021 in Paris has already started and

this promises to be another landmark IACM event that will be 

held jointly with the large ECCOMAS 2020 congress (wccm- ecco-

mas2020.org).  I also advise to keep an eye on the different

events regularly promoted by the IACM in different countries.

Eugenio Oñate
Editor of IACM Expressions
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"In1986 the first World Congress of

the Association took place in Austin,

Texas, and at the same meeting the first

Executive Council was elected."  This

was the first sentence of the Editorial

letter from O.C. Zienkiewicz in the

1st issue of the IACM Expressions in

Spring 1996. Since 1986 the International

Association of Computational Mechanics

has made a great stride to promote and

consolidate our community all over the

world.  Today IACM is a well-established

professional society, with almost five

thousand affiliates worldwide.  Credit

for these achievements must go for the

past-presidents and officers of IACM

who generously devoted precious time

to the society and also to each individual

member working everyday for the success

and impact of computational mechanics.

Thank you all!

Consequently, I am humbled and very

enthusiastic to serve as the President 

of such an outstanding association, 

leading an Executive Council composed 

of brilliant scientists and friends.  Our 

primary mission is to stimulate and 

promote education, research and practice

in Computational Mechanics, to foster the

interchange of ideas among the various

fields contributing to this science, and 

to provide forums and meetings for 

the dissemination of knowledge.  

We will keep the hard work in the rapidly

changing environment.  Of course, 

the major events at the core of the

Association will remain our World

Congresses (Paris 2020 & Yokohama

2022) and our IACM Conferences 

(FEF Chicago 2019) but also, every 

activity developed by our affiliated 

associations and members.  I encourage

you to participate and help the congress

organizers hosting minisymposia of your

interest!

We are privileged to collaborate with 

a remarkable network of affiliated 

associations. As of today, thirty-one 

societies covering every world region.

Their activities and continuous work 

allow to promote Computational

Mechanics in academia, industry, the 

society at large and, very important, 

into the new and young generation of

researchers and engineers. 

While we have achieved great things,

there is much more to do.  Working 

to build the future, we count very much 

on the interaction and collaboration 

with every member and also, notably, 

with our esteemed international affiliated

societies.

Together we will succeed.

Antonio Huerta
President of IACM

To the IACM Community:
@ IACM Community
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by
C. Soize

Université Paris-Est
Marne-la-Vallée

christian.soize@u-pem.fr

R. Ghanem 
University of Southern

California
roger.ghanem@usc.edu

Usual big data and small volume of 
data associated with expensive 
large computational models

Machine learning is revolved around

empirical models such as kernels or

Neural Networks (NN) that require big

data and efficient algorithms for their 

identification and training.  If the volume 

of data is not sufficiently large, it may not

generally be possible to train the NN to

the desired behavior.  In the framework 

of computational science and engineering,

while computationally taxing simulations

are typically used to generate big data, 

the quantities of interest (QoI) from each

such simulations are typically much 

smaller.  In many such problems, however,

and in particular in the context of uncer-

tainty quantification (UQ), the fundamental

challenge is in characterizing the map

from input to QoI in a manner that is 

conducive to inference and design.

In these problems, a large number of

expensive function evaluations are

required in order to explore, sufficiently

well, both the design and the input sets.

The size of the former set depends on the

range of design variables while the latter

reflects uncertainty in input variables.

While these problems are best classified

under the heading of “small data”, they

share some of the conceptual and 

computational challenges of “big data”

with further complications pertaining to

scarcity of evidence, and the necessity 

to extract the most knowledge, with 

quantifiable confidence, from scarce data.

Role played by statistical and 
probabilistic learning methods for 
stochastic computational models

In this context, probabilistic learning is 

a way for improving the knowledge that

one has from only a small number of

expensive evaluations of a computational

model in order to be able to solve a prob-

lem, such as a nonconvex optimization

problem under uncertainties with nonlinear

constraints, for which a large number of

expensive evaluations would be required,

which, in general, is not possible.

This is one reason for which statistical and

probabilistic learning methods have been

extensively developed (see for instance,

[1-10]) and play an increasingly important

role in computational physics and 

engineering science [11].  In large scale

model-driven design optimization under

uncertainty, and more generally, in artificial

intelligence for extracting information from

big data, statistical learning methods have

been developed in the form of surrogate

models that can easily be evaluated [12-

14] such as, Gaussian process surrogate

models [15,16], Bayesian calibration 

methods [17-19], active learning [20,22],

which allow for decreasing the numerical

cost of the evaluations of expensive 

functions.  This is particularly crucial for

the evaluation of expensive stochastic

functions induced by the presence of a

probabilistic modeling of uncertainties in

large computational models.  This is a

major challenge that requires the use 

of suitable mathematical methods and

algorithms such as, for instance, those

proposed in [23-26].

A novel probabilistic learning on 
manifolds

This very short paper deals with the 

presentation of a novel probabilistic 

learning on manifolds that can be viewed

as a computational statistics tool for

addressing challenging problems based

on large scale simulations in the presence

of model uncertainties.  We present the

main idea and illustrations of this novel

probabilistic learning on manifolds, 

recently developed [27-29], which provides

a mathematical framework and algorithms

to address difficult problems such as 

those encountered for data driven and

optimization problems using expensive

large numerical models [30] (in presence

of uncertainties generated by modeling

errors [31] or due to random media

[32,33]), but also for enhancing the 

predictability of large computational 

models of very complex systems, such as

those related to combustion in hypersonic

flows [34].

Representing the random response of the
given stochastic computational model. 
We consider a stochastic computational

model of a discretized complex system for

Probabilistic Machine Learning for the 
Small-Data Challenge in Computational Science 
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which its response is written as Q = f(W,U)

in which W is a vector-valued random

parameter controlling the system, with 

values in a given admissible set Cw,

whose probability distribution PW(dw) is

given and has Cw as support.  In the 

computational model, the probabilistic

model of uncertainties is represented by

the vector-valued random parameter U

for which the probability distribution PU(du)

is given and is independent of W.  

The quantities of interest are described 

by the vector-valued random variable Q

that is a deterministic nonlinear transfor-

mation f of W and U.  The mapping f

represents the response q = f(w,u) of the

computational model for given u and 

given w in Cw.  It is assumed that the

probability distribution of the random 

vector X = (W,Q) = (W, f(W,U)) has a 

density with respect to dx.

Constructing the initial dataset using 
the expensive stochastic computational
model, objective, and fundamental 
difficulties. An initial dataset of length N

(with N small) is constructed as the set of

N points  {xd,j, j=1,…,N} with xd,j = (wd,j, qd,j)

in which qd,j = f(wd,j, ud,j) are N indepen-

dent realizations of Q (calculated using 

the expensive computational model) and

where wd,j and ud,j are N independent 

realizations of W and U.  Consequently,

{xd,j, j=1,…,N} are N independent 

realizations of random vector X = (W,Q).

Knowing only this initial dataset, the 

objective is to construct, for any w in Cw,

an estimate h(N)(w) of h(w) that is defined,

for instance, by h(w) = E{H(Q)|W = w} in

which E is the conditional mathematical

expectation given W = w and where H is a

given deterministic mapping (for instance,

h(w) could be the objective function of an

optimization problem for which w would be

the design parameter belonging to Cw).  

If each evaluation qd,j is computationally

expensive, then N will be, generally, not

sufficiently large for obtaining a good 

convergence of h(N)(w) towards h(w).  

One way for circumventing this difficulty 

is to use the probabilistic learning on 

manifolds that allows for generating 

M >> N additional realizations 

{(wa,j, qa,j), j=1,…,M} without using the

expensive computational model in order 

to construct a better estimate of the 

conditional expectation that is required for

computing h(N)(w), as shown in [30]. 

Probabilistic learning on manifolds [27].

Given an initial dataset {xd,j, j=1,…,N} of

random vector X, the probabilistic learning

on manifolds allows for constructing 

M additional independent realizations 

{xa,j, j=1,…,M} of X whose non-Gaussian

probability distribution (which is unknown)

is assumed to admit a probability density

function (pdf) with respect to the measure

dx, and assumed to be concentrated in an

unknown subset of the  set of values of X.

In the framework of the previous para-

graph, such a concentration of the 

probability distribution of X is related to

the fact that X represents the random

graph (W, f(W,U)) (random manifold).  

The method proposed allows for generat-

ing {xa,j, j=1,…,M} in preserving the con-

centration and consequently, by avoiding

the scattering of the generated additional

realizations.  The main steps of the con-

struction can be summarized as follows: 

(i) A principal component analysis of 

random vector X is performed using 

only the initial dataset {xd,j, j=1,…,N}. 

A new random vector Y is then 

constructed for which the realizations 

{yd,j, j=1,…,N} are directly deduced 

from {xd,j, j=1,…,N}.  This step allows 

for normalizing the initial dataset.  It 

should be noted that the components 

of Y, which are centered and 

uncorrelated, are statistically 

dependent because Y is not Gaussian.

The probabilistic learning on manifolds 

proposed consists in exploiting this 

statistical dependence as information 

for improving the knowledge with 

respect to the classical statistical 

methods (for a Gaussian random 

vector, the uncorrelated components 

would be independent and so, the 

random vector would be completely 

defined, no learning would be 

required).

(ii) A modification [35] of the multidimen-

sional kernel density estimation 

method [36] is used for constructing an 

estimate pY of the pdf of Y using initial 

dataset {yd,j, j=1,…,N}.  Estimate pY of 

the pdf of Y depends on N.  A random 

matrix [Y] is introduced such that its N

columns are made up of N indepen-

dent copies of random vector Y.  The 

pdf p[Y] of random matrix [Y] with 

respect to d[y] is then directly deduced 

from pdf pY with respect to dy.  A 

realization of random matrix [Y] 

is the deterministic matrix 

[yd] = [yd,1… yd,N].

(iii) A Markov chain Monte Carlo (MCMC) 

generator for [Y] is constructed [37] in 

the class of Hamiltonian Monte Carlo 

methods [37,38], solving a nonlinear 

Itô Stochastic Differential Equation 

(ISDE) corresponding to a stochastic 

“  a novel 
probabilistic
learning on

manifolds that
can be viewed

as a 
computational

statistics tool
for addressing

challenging
problems based

on large scale
simulations in

the presence 
of model 

uncertainties.”
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Figure 1:(from [27]) 
Left figure: N= 400 points (blue symbols) of the initial dataset. 
Central figure:  M = 8,000 additional realizations (red symbols) 
generated with a classical MCMC algorithm. 
Right figure: M= 8,000 additional realizations generated with the 
probabilistic learning on manifold (red symbols)

nonlinear dissipative Hamiltonian 

dynamical system, for which 

p[Y] ([y]) d[y] is the unique invariant 

measure.

(iv) A diffusion-maps approach [39] is 

used for discovering and for character-

izing the local geometry structure of 

initial dataset {yd,j, j=1,…,N}.

A diffusion-maps basis is defined as 

the eigenvectors [g] = [g1 … gm]

associated with the first m < N positive 

eigenvalues (ordered in decreasing 

order) of the transition matrix of the 

Markov chain constructed on 

{yd,j, j=1,…,N}.

(v) A reduced-order representation 

[Y] = [Z] [g]T is introduced in which the

new reduced-order random matrix [Z]

has only m columns.  The hyperpara-

meter m << N, which corresponds to a

statistical reduction of [Y] with respect 

to data dimension N, must be carefully 

chosen [29] in order to separate the 

scales existing in data.  Such a 

separation allows for preserving the 

concentration of the additional 

realizations generated by the 

probabilistic learning and then for 

avoiding the scattering of generated 

additional realizations.  

(vi) The additional realizations are then 

obtained by solving the reduced ISDE 

obtained by projecting the ISDE 

introduced in step (iii) on the basis 

[g]T.  The invariant measure of this 

reduced ISDE is the probability 

distribution of random matrix [Z].

(vii)The last step consists in analyzing the 

convergence of the probabilistic 

learning with respect to N.  This point 

is very important.  For a given 

application, N is imposed and is 

related to the CPU time that is 

available.  The probabilistic learning 

algorithm is then applied for several 

increasing values of the length 

of the initial dataset: 

2 < N1 < N2 < … < Nn = N.  The 

convergence of the sequence of the 

statistical quantity of interest indexed 

by k= 1,…,n is then studied.  If a 

convergence is obtained for k less 

than or equal to n, then the 

probabilistic learning is converged.  

If not, length N has to be increased 

and additional calculations have to be 

carried out using the expensive 

stochastic computational model in 

order to increase length N of the initial 

dataset.

Illustration of the loss of concentration
using a classical MCMC generator and 
of the efficiency of the probabilistic 
learning on manifolds that preserves the
concentration and avoids the scattering.

Figure 1-(left) displays N= 400 given

points of the initial dataset for which 

the realizations of the random variable 

X = (X1,X2,X3) are concentrated around 

a helical.  Figure 1-(central) shows 

M = 8,000 additional realizations of X

generated with a classical MCMC 

algorithm for which the invariant measure

is constructed as explained in step (ii).

The concentration is lost and there is a

scattering of the generated realizations.

Figure 1-(right) shows M= 8,000 additional

realizations of X generated with the 

probabilistic learning on manifold (steps (i)

to (vi)) using the reduced ISDE with m = 4.

It can be seen that the concentration is

kept and there is no scattering of the 

additional realizations.

Applications

Nonconvex optimization under 
uncertainties using a limited number of
function evaluations [30]. We consider the

following nonconvex optimization problem:

find the optimal value wopt that minimizes

the objective function J(w) for w = (w1,w2)
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belonging to the admissible set Cw and

under the constraints c(w) = (c1(w), c2(w),

c3(w), c4(w)) < 0 (which means ck(w) < 0).

The computational model is stochastic,

depending of a random vector U.  The

design parameter w is modeled by a 

random vector W = (W1,W2) with a 

given prior probability distribution that 

is used for generating N points in 

Cw: {wd,j, j = 1,…,N}.  Objective 

function and constraint vector are 

written as conditional mathematical 

expectation J(w) = E{J | W = w} and 

c(w) = E{B | W = w} in which the random

vector Q = (J, B) is the quantity of interest

that is constructed as observations of 

the stochastic computational model.  

We can then introduce 

h(w) = (J(w) , c(w)) = E{Q | W = w}.  

The dimension of Q is then 5 and the 

dimension of random vector X = (W,Q)

is 7.  The reference model, (J(w) , c(w)),

and the stochastic computational model, 

Q = f(W,U), are known.  The graph of 

the reference objective function J(w) is 

displayed in Figure 2-(left) (grey lines in

the left figure).  Each component ck(w) of

the reference constraint function c(w) is a

plan in 3D space (ck,w1,w2).  Figure 2-
(central) displays the contour plot of the

reference objective function J(w) and

shows the location of the optimal solution

wopt = (w1
opt,w2

opt) with w1
opt = 0.74 and 

w2
opt = 0.49 for which the four constraints

are active (the reference solution would

not be the same without the constraints)

and J(wopt) = - 0.123.  The initial dataset 

is made up of N= 900 realizations 

{xd,j = (wd,j,qd,j) , j = 1, …,N} of random

variable X = (W,Q), which are calculated

with the stochastic computational model.  

Figure 2-(right) displays the points

{(wd,j,q1
d,j) , j = 1, …,N} corresponding to

the random variable (W,Q1) in which Q1 is

the random variable J.  These points are

also surperimposed to the graph of the

reference objective function in Figure 2-
(left).  The four figures that would illustrate

the N realizations of the four random 

variables (W,Qk) in which Qk represents

the random variable Bk (the constraints)

are not displayed for limiting the number

of figures. 

The probabilistic learning on manifolds

is applied using the initial dataset made 

up of N = 900 points, with m = 5, for 

M = 9,000 additional realizations, 

and M = 90,000 additional realizations,

which are used for estimating 

(J(w),c(w)) = E{Q | W = w} (without using

the stochastic computational model).  The

optimization algorithm that is used is the

grid search algorithm.  Figure 3-(left)
shows the contour plot of the objective

function estimated with N = 900 points 

of the initial dataset; the optimal solution 

cannot be identified because the cost

function is not well represented.  

Figure 3-(central) and Figure 3-(right)
show the contour plots of the objective

function estimated with M = 9,000 and 

M = 90,000 additional realizations using

the probabilistic learning on manifolds; 

the objective function is well represented

and therefore, the optimal solution (white

diamond) is correctly estimated (white

disk) for these two values of M.  It can be

seen that the probabilistic learning on

manifolds allows for reconstructing the

contour plot (central and right figures) of

the objective function without using the

stochastic computational model, but 

using only the initial dataset.  In opposite,

the contour plot of the objective function 

is not correctly reconstructed using 

only the initial dataset (left figure) and 

consequently, does not allow for 

identifying the optimal solution.  For 

M = 9,000, the estimation of the optimal

solution is w1
opt = 0.70 and w2

opt = 0.49 with

J(wopt) = - 0.112, which is good enough.

Figure 2:(from [30]) 
Left figure: graph of the reference objective function J(w) (grey lines) 

Central figure: contour plot of the reference objective function J(w) and  
optimal solution wopt = (w1opt,w2opt) (white diamond)

Right figure: initial dataset of the N= 900 realizations 
{(wd,j,q1d,j) , j = 1, …,N} corresponding to the random variable (W,Q1) 

in which Q1 is J (blue symbols); 
these points are also surperimposed to the graph of the reference 

objective function in the left figure
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Enhancing model predictability using the
probabilistic learning on manifolds.
We refer the reader to a very interesting

challenging application [34] devoted to 

the analysis of a complex flow inside 

a scramjet for which the probabilistic

learning on manifolds allows for enhancing

the predictability of this very complex 

system that is represented by a large

scale computational fluid dynamics model

devoted to the combustion in an internal

hypersonic flow, which requires to solve

the fully-coupled conservation equations 

of mass, momentum, total-energy, and

species for a chemically reacting flow, in

taking into account high Reynolds number,

high-pressure, real-gas and/or liquid 

conditions, detailed thermodynamics, and

transport processes at the molecular level.

The probability density functions of the

quantities of interest and their associated

maximum statistics are estimated 

even though the number of large scale

simulations available from the LES runs 

is not sufficient to obtain sufficiently 

converged estimates of these quantities.

It is shown how the probabilistic learning

method learns as a function of the size 

of the datasets.  This type of analysis also

serves to determine if the dimension of

the initial dataset is sufficiently large for

providing an assessment of the quality

of the probabilistic learning.  The

analysis of these probability density func-

tions allows for proposing reasonable

interpretations of the physical behavior of

the complex turbulent flow in relationship

to the mesh size of the fluid domain and

the time averaging that is used for con-

structing the quantities of interest, such as

the turbulent kinetic energy at different

stream wise locations of the flow (see [34]

for the detailed analysis).  In Figure 4, the

three figures are from [34].  The right fig-

ure displays the pdf of the maximum

statistics of the pressure stagnation loss

estimated with the probabilistic learning for

which the length N of the initial dataset is

N = 50 (dashed black line), N = 100 (thin

Figure 3:
(from [30]) Left figure: Contour plot of the objective function estimated
with N = 900 points of the initial dataset  
Central figure: with M = 9,000 additional realizations 
Right figure: and with M = 90,000 additional realizations 
The reference optimal solution is the represented by the white diamond
and the estimated optimal solution using the probabilistic learning on
manifolds is represented by the white disk

“  probabilistic
learning
method learns
as a function of
the size of the
datasets.”

Figure 4: 
Left figure (from [40,34]: HIFiRE (Hypersonic International Flight
Research and Experimentation) Flight 2 payload
Central figure (from [41,42,34]: HDCR (HIFiRE Direct Connect Rig)
experimental setup and schematic of the full computational domain
Right figure (from [34]): probability density function of the maximum-
statistics of the pressure stagnation loss estimated with the probabilistic
learning for which the length N of the initial dataset is N = 50 
(dashed black line), N = 100 (thin black line),  N= 200 (med red line), 
N = 256 (thick black line) and for which M = 25,600 additional 
realizations are used for the statistical estimates

Fuel System

Forbody / 

Inlet

Shroud

Isolator /

Combustor

Exhaust

Nozzle
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black line), N = 200 (med red line), N =

256 (thick black line) and for which 

M = 25,600 additional realizations are

used for the statistical estimates.  

This figure shows the convergence of the

learning when the length N of the initial

dataset increases.

Probabilistic learning on manifolds used
for solving nonconvex optimization prob-
lem related to a large scale stochastic
computational model.  We refer again 

the reader to another very interesting 

challenging application [33] devoted to the

design optimization under uncertainties 

of a mesoscale Titanium implant in a 

biological tissue using the probabilistic

learning on manifolds for solving the 

nonconvex optimization problem related 

to the design optimization.  The 

parameterization of the geometry of the

Titanium implant in the biological tissue 

is defined in Figure 5-(left).  The scale 

of the implant is at mesoscale (L1 = 10−4 m,

L2 = L3 = 10−3 m, x2s = 0.4 × 10−3 m), which

means that the statistical fluctuations 

in the biological tissue interact with the

implant and cannot be homogenized.  

The two design parameters are a and b

(see Figure 5-(left)).  The stochastic 

computational model is constructed by

using the finite element discretization of

the stochastic linear static boundary value

problem for which: 

(i) the elasticity field of the cortical bone 

(heterogeneous linear elastic random 

medium) is modeled by a non-

Gaussian tensor-valued random field 

controlled by three spatial correlation 

lengths and by a dispersion coefficient 

controlling the statistical fluctuations in 

the anisotropic class, 

(ii) the Titanium is a homogeneous linear 

elastic medium, 

(iii) a random static load is applied to the 

Titanium implant (upper yellow surface 

in Figure 5-(left)), and 

(iv)a part of the boundary of the biological 

tissue is fixed (lower yellow surface in 

Figure 5-(left). 

The spatial correlation lengths and the 

dispersion coefficient have been identified

by solving a statistical inverse problem

[43] using measurements [44] performed

by a digital image correlation technique.

The design optimization consists in 

minimizing random normal stresses

applied to the interface between the

implant and the cortical bone.  Nonlinear

constraints (inequalities) are taken into

account in the optimization problem 

for limiting random shear stresses and

random Von Mises stresses in certain

regions of the biological tissue.

Computation has been performed with 

a 512 Go-RAM Linux work station using

parallel computing with 40 workers

(cores).  The construction of the reference

optimal solution (without probabilistic

learning) has required 2,560 hours of 

CPU time (64 hours of elapsed time) 

while the construction of the optimal 

solution using the probabilistic learning 

on manifolds has only required 104 

hours of CPU time (2.6 hours of elapsed

time) yielding a gain factor that is 

about 25. l

“The design optimization consists in 
minimizing random normal stresses
applied to the interface between the

implant and the cortical bone.”

Figure 5 (from [33])
Left figure: Parameterization of the geometry for the Tinanium implant

occupying domain of the right part of the scheme with 
L1 = 10−4 m, L2 = L3 = 10−3 m, and x2s = 0.4 × 10−3 m, in a biological 

tissue (cortical bone) occupying domain of the left part of the scheme.
Central and right figures: Microstructure of the 

cortical bone at scale 5×10−4 m
(central figure) and one osteon at scale 5 × 10−5 m (right figure) 

[Photo from Julius Wolff Institute, harité - Universitatsmedizin Berlin]
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Geometric surface  models describing

thin-walled structures are very often

defined by NURBS or similar spline-based

functions.  They therefore ideally combine

with the paradigm of the Isogeometric

Analysis (IGA), which applies the same

spaces for description of geometry and

Ansatz functions thus drastically reducing

the effort for transition from CAD models to

numerical analysis.  Yet, in engineering

practice, many more types of geometric

models are used.  These include

Constructive Solid Geometry (CSG), which

is frequently extended to parametric and

feature-based design.  Volumetric CAD

models are also often described by indirect

methods like the Boundary Representation

(B-Rep).  Completely different model types

result from tomographic methods, where a

body is defined only by a discretized density

distribution. 

In this paper, it will be shown how immersed

boundary or embedded domain methods

strongly support geometry-analysis 

integration in particular for solid structures.

We will concentrate on the Finite Cell Method

(FCM), which can use low- and high-order

finite element spaces as well as spline-

based, ‘IGA-like’ approximation spaces.  

For simplicity of description, we concentrate

by
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on linear elastic models, yet point out, that

FCM has successfully been applied to a

large variety of other problems like elasto-

plasticity, contact problems, delamination,

multi-physics and multi-scale problems. 

The Finite Cell Method
Immersed boundary methods have 

been investigated in many variants 

(e.g. fictitious/embedded domain methods)

since the 60ies of the last century [1].

Neittaanmäki and Tiba [2], Peskin [3], 

Del Pino and Pironneau [4], Mittal and

Iaccarino [5], Glowinski and Kuznetsov [6]

have made important contributions.  More

recent work refers to the CutFEM approach

[7,8].  We consider in this paper the Finite

Cell Method [9-11]. 

The basic idea of the Finite Cell Method can

readily be explained with Figure 1, where it is

formulated for the problem of linear elasticity.

A bilinear form a (u,v) representing the strain

energy functional for a displacement field u
and virtual displacements v is extended from

its original domain of definition Ω to an

extended domain Ωe.  u and v are from an

appropriate trial and test space V.  ε denotes

the strain tensor and C the elasticity tensor.

A volume load f and a surface traction t result

in a load functional F(v).  The original weak

Figure 1:
The Finite Cell Method

The Finite Cell Method:
An immersed boundary technique for integration 

of geometric models and numerical analysis
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form of the elasticity problem is approximated

by multiplying the elasticity tensor C by a

function α, which is 1 in the original domain

and obtains a very small value (typically

10-6 to 10-12) in the fictitious domain Ωe \ Ω.

The rightmost part in Figure 1 shows a

background grid of ‘finite cells’ defined on

the extended domain Ωe.  In principle, on

this grid a classical numerical discretization

can be applied.  Low- or high-order finite

elements can be used, or also knot span

elements as defined in IGA are applicable.

Using this grid of cells, the problem of mesh

generation is completely avoided.  In contrast

to the existence of a finite element mesh

only the knowledge of the membership of

an integration point in a finite cell to either

the interior or the exterior of the domain Ω

is necessary. 

The effort for transition from a geometric

model to numerical analysis is thus drastical-

ly reduced, yet several new problems have 

to be solved.  Among these are:

aHow can boundary conditions in cells cut 
by the boundary of Ω be applied?

aIn cut cells the integrand of the stiffness 
matrix is discontinuous.  How can these 

integrals be computed precisely and 

efficiently?

aHow can stability issues related to 
conditioning of resulting equation systems 

for the reformulated problem be handled?

aIn numerical integration formulae for these 
cut cells, how can one decide quickly if an 

integration point is inside or outside of the 

domain?

aHow can this Point-Membership-Test 
(PMT) be related to different geometrical 

models of the domain of computation?

Some central questions
In the following, we will briefly discuss the

first three listed items and refer to related 

literature, whereas we discuss questions

concerning point membership tests and show

applications for different geometric models at

the end of this short paper.

Boundary conditions: Neumann boundary

conditions can easily be represented due to

their integral nature in the weak formulation.

The surface traction multiplied by the corre-

sponding element shape functions have to

be integrated over that part of the loaded 

surface, which is cut by the respective cell.

In case of homogeneous b.c. nothing has to

be done, as the surface integral is zero [10].

The case of Dirichlet boundary conditions is

more complex.  These b.c. also need to be

applied in a weak sense.  Various methods

are available, like e.g. Nitsche’s method 

[12-14].  

Integration of cut cells: Numerical integration

of cut cells is crucial for the accuracy and 

efficiency of the Finite Cell Method.  For 

a survey with a comparison of different

approaches, we refer to [15].  Here we 

concentrate on the simple, yet very robust

version, the use of a cell-wise defined inte-

gration space-tree, which is successively

refined towards the boundary of the domain

of computation.  The cell to be integrated is

recursively bisected towards the location of

the boundary.  Thus, more and more of the

generated sub-cells are either fully in or fully

out of the domain and can be accurately 

integrated by Gaussian formulae.  Only the

smaller and smaller strip of cut sub-cells is

affected by the discontinuity of the integrand.   

Stability and conditioning of system matrices:
Applying an indicator function α which is

exactly zero outside Ω causes stability 

problems, in particular for cells with a very

small material fraction.  In these cases, 

techniques like the ghost penalty stabilization

[12] can be applied.  An alternative is to 

use a small but finite α. From a mechanical

point of view, this is equivalent to embed the

original structure in a ‘soft’ material.  Thus 

the extended problem remains stable from a

mathematical point of view, but the model

itself is changed, introducing a modelling

error and resulting in a slightly different

‘exact’ solution compared to the original 

formulation.  Yet in practice, this modelling

error is small enough (it is in the order of the

strain energy in the ‘soft’, extended material!)

so that it has no influence on an engineering

relevant accuracy.  For a mathematical

analysis of the relation of modelling and

approximation error, it is referred to [16].

Conditioning of the system matrix, which 

may also deteriorate in case of small cuts,

can be controlled by the above-mentioned

ghost penalty method, or in cases of non-

vanishing α by Jacobi preconditioning and

local orthogonalization [17].  In more 

complex cases like FCM combined with 

local hierarchical refinement, Additive-

Schwartz-type preconditioning has been

shown to be very successful [18,19].

Applications
Constructive Solid Geometry (CSG-models):
CSG is a widely used modelling technique

where a body is defined by a tree of 

geometric Boolean operations (union, 

intersection, difference) operating on 

primitives, which are in the simplest case

mapped spheres, cylinders, cubes, tori etc.

The library of primitives can be extended 

by more complex basic objects obtained 

e.g. by sweeps and lofts (see, e.g. [20]).  

The Point-Membership-Test can be 

“  labour-
intensive pre-
processing of
problems with
complex 
geometry can 
be simplified.”
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carried out easily and efficiently.  The 

geometric tree is equivalent to a tree of 

logic operations, and the elementary PMT

operations are carried out on the primitives,

where they are simple to perform. CSG-

models can be extended to Parametric or

Feature Based Geometric Models [21] by

programming 

languages to

define, constrain

and interrelate 

geometric and topologic

parameters.  An 

example for a pipe built

up as a CSG

model is shown

in Figure 2.  

Figure 3a shows

the embedding

domain for a FCM

Figure 3(a):
Steel joint with
finite cell mesh

Figure 3(b):
Steel joint with

equivalent stress

Figure 2:
Constrution tree for

a steel joint

computation (to be precise, only those finite

cells which have a non-empty intersection

with the pipe!) and Figure 3b the von 

Mises stress on the deformed structure.  

The major advantage of FCM compared 

to a finite element computation becomes

obvious in Figure 4.  Here, not only some

geometric parameters have been changed,

also the number of holes in the attachment

plate is different from the example in 

Figure 3.  Any finite element analysis would

need the generation of a new mesh, 

whereas no regeneration is necessary for

FCM.  The new structure is identified on 

the level of the Point-Membership-Test 

for the integration points of the cell 

matrices.

Mixed Voxel-based and B-Rep Models:
In this final example, we will demonstrate 

the possibility to use different geometric

descriptions in one joint geometric model.

Figure 5 shows a sectional cut through a

quantitative computer tomogram (qCT) of 

a human vertebra together with a fixation

screw implanted in the bone.  The qCT

stores in a voxel structure Hounsfield 

values of the bone, which are the basis for

computation of the local elasticity modulus

(see, e.g. [22]).  The screw is modelled by its

boundary representation (B-Rep), where the

surface is first defined by NURBS and then

discretized into a facetted model.  The PMT

for this combined model is now performed as

follows: For an integration point of the finite

cell computation a first (Boolean) test is 

performed, deciding if it is inside the screw.

For efficient methods to perform this test

even in cases of ‘dirty’ B-Rep models, i.e.

those which have small gaps or overlaps, 

we refer to [23].  The test is performed in 

two steps, where a first, coarse step relies 

on an octree approximation of the structure,

whereas the second, fine grain step uses a

modified ray shooting technique (see [24]).

Whenever the point of interest is outside the

screw it is tested w.r.t. the voxel model of the

qCT.  As each voxel represents the density 

of the bone, a threshold value is defined to

distinguish between bone and empty space.

Thus, this model can be 

interpreted as a level 

set description, where

the critical value is not (as

usual) zero, but the 

predefined density

threshold.  Special care

has to be taken on the interface

between bone and screw, where

suitable transition conditions are defined

(see [25]).  Further, in this example we use 

a hierarchically refined grid of finite cells 

(see [26]) to obtain sufficient efficiency and

(a)

(b)
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Figure 4:
Equivalent stress 
on modified structure

Figure 6 (a) and (b):
Equivalent strain on two sections

Figure 5:
(a) qCT scan of a human vertebra (b) BRep-Model of screws embedded in

hierarchically refined FCM grid

accuracy despite the highly complex 

geometry of this example.  Figures 6a and
6b show equivalent strains

in sections of the 

structure.

Conclusions
We have presented the Finite Cell 

Method, which is a fictitious domain

approach that allows for low-, high-order 

as well as ‘IGA-like’ approximation spaces.

Thanks to its versatility, the FCM can be 

easily combined with different geometric

models supporting a seamless discretization

process.  In this way the labour-intensive 

pre-processing of problems with complex

geometry can be simplified.  Since the

FCM inherits most of the properties of

finite elements and IGA, it represents an 

attractive simulation approach that is 

applicable to challenging problems of

Computational Mechanics.  l
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Dislocations in a deformed crystal tend

to aggregate into various dense

formations separated by relatively

dislocation free regions.  These dense

formations are called dislocation patterns

that underlie most important crystal

plasticity features such as work hardening

and strain localization.  Depending on

slip geometry, external loading and

temperature, rather different pattern

morphologies emerge e.g. labyrinth,

ladder, wall, and cell structures) emerge

from deformed crystals as shown in

Figure 1.

Understanding spontaneous emergence 

of dislocation patterns during plastic 

deformation has been an outstanding 

and critical task in developing a physical

mechanism-based crystal plasticity. 

During the past decades several phe-

nomenological continuum models of dislo-

cation pattern were proposed e.g. Kubin

and Canova [1], Kratochvil and Saxlova

[2], Aifantis [3], and more recently,

Hochrainer et al. [4, 5, 6], and Groma et al.

[7], but none of them were developed or

derived based on atomistic considerations

through a systematic and controlled

coarse-grain procedure, and none of them

has lead to an valid crystal plasticity theory

yet.

Two bottom-up approaches towards 

“first-principle" based crystal plasticity are:

molecular dynamics and discrete disloca-

tion dynamics, which have received much

attentions in recent years.  Atomistic-based

molecular dynamics has been extensively

used to study some of the isolated interac-

tion mechanisms, but it is limited by the

spatial and temporal resolution that the

current computational technology has

diculties to resolve.  In particular, because

of such limitation, the molecular dynamics

approach has diculty to properly capture

the long-range character of dislocation

stress field, heat dissipation mechanism,

and obviously, the statistical nature of 

crystal plasticity.  Alternatively, discrete

Dislocation Dynamics (DD) is another

extensively-used approach that attempts 

to delineate the overall motions or effects

of large scale dislocation ensembles at

mesoscale by decomposing dislocation

lines of arbitrary curvature into piecewise

segments based on linear elasticity theory.

In addition to some other limitations, DD 

is also limited by its computational capaci-

ties failing to capture the microstructure 

of aggregated dislocations, or more 

specifically, the dislocation patterns, so 

that we cannot study long range flow

stress effects based on dislocation 

motions and hence crystal plasticity itself.

Figure 1 (I) and (II) display the dislocation

pattern formations for various crystals.

They showed that for a given crystal and

along given crystallographic directions the

dislocation pattern may be related to the

original crystal lattice structure or micro-

structure.  Thus, just like geometrically

necessary dislocations, we hypothesize

that there exist a class of geometrically

Figure 1: 
(I) Dislocation pattern formations under 

cyclic loading in a Silver single crystal observed from
different lattice orientation 
(From Li et al.(2009) [8]), 

and 
(II) Dislocation pattern formations 

under cyclic loading in a Nickel single crystal observed from different 
lattice orientation (From Bugue et al. (2001) [9] ),

and 
(III) Concept of geometrically-compatible dislocation patterns
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compatible dislocation patterns.  Such 

geometrically-compatible dislocation 

patterns are aggregated dislocation 

pattern growing out of particular individual

atomic sites and atomic planes forming 

a geometrically compatible network that is

a natural extension of the original crystal

microstructure.

Based on the evidences obtained from 

MD simulations (see Figure 3 (II)) in the

multiscale crystal defect dynamics, we

postulate that the geometrically-compatible

dislocation pattern in crystal are related to

the dual super-lattice of the original crystal

lattice in the early stage, and the actual

dislocation patterns may emerge from the

dual super lattice mesh, depending on

loading condition and loading history.

Starting 2014, in a series of works [10, 11,

12], we have discovered the geometrically-

compatible dislocation patterns in both 

BCC and FCC crystals, and we have 

since developed a Multiscale Crystal

Defect Dynamics (MCDD), which is a 

geometrically-necessary or geometrically-

compatible  dislocation pattern dynamics.

Figure 1 (III) show how a geometrically-

compatible or geometrically-compatible 

dislocation pattern is formed.  In Figure 2,

we show the geometrically-compatible 

dislocation pattern formations in both BCC

(Figure 2 (III)) and FCC (Figure (IV))

crystals.

To simulate the actual geometrically-

compatible dislocation pattern formations,

we create a so-called pre-dislocation 

pattern finite element mesh in the domain

of interests, this special dislocation 

pattern-like FEM mesh is a global cover 

or partition of crystal lattice space that is

topologically the same as that of the 

geometrically-compatible dislocation 

pattern.

In some cases, this pre-dislocation pattern

mesh is in fact a quasi-lattice structure 

that is resulted from the symmetry broken

of the original lattice structure.  This long-

range order geometrically-compatible 

dislocation pattern partition of the original

lattice space is part of a “heritage” of the

crystal microstructure.  Based on this

development, we postulate that for a given

type of crystals, it is only prone to certain

types of defects or damage that are asso-

ciated with the geometrically-compatible

pattern of the original lattice space.

In Figure 3 (I), we compare the dislocation

pattern observed in experiments with that

constructed in MCDD finite element mesh.

One can see that the resemblance

between the two.

Towards an atomistic-informed crystal
plasticity

Based on the concept of geometrically-

compatible dislocation pattern, we have

developed a multuscale crystal defect

dynamics (MCCD) (see [10, 11, 12].  

The basic idea of MCDD method is to

embed the long-range order pre-defect

process zone or the geometrically-

compatible dislocation patterns a priori as

the lattice finite element mesh, and then 

let crystal material evolving itself under

external loads to select its own failure

pathes or ramifications based on the finite

numbers of combinations of possible 

dislocation patterns that have been

embedded into the MCCD finite element

mesh according to an atomistically-

informed constitutive equation without 

solving any ad hoc defect pattern evolution

equations.

According to the invariant properties of 

dislocation dynamics, these three-

dimensional dislocation may be scalable,

and it may be consisted of different “order ”

of process zones that are lacing together

many bulk crystal elements, which have

low dislocation density (dislocation cells).

In the modeling, Different dislocation pat-

Figure 2: 
(I) How to form geometrically-compatible dislotion pattern 

(GNDP) formations lattice; 
(II) How does a lattice simplex become lattice CW complex; 

(III) BCC geometrically-compatible dislocation patterns,
and (III) FCC geometrically-compatible dislocation patterns
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pre-dislocation mesh patterns in respective

orientations, which suggests that at least

the mechanism of the early dislocation 

pattern formation is not a random or 

stability event, but rather a lattice geo-

metric configuration related event that is 

completely determined by the crystalline

terns are being modeled as the combina-

tions of different order of process zones:

(1) Dislocation cell or sub-grain mainly

consists of bulk crystal elements; 

(2) Dislocation wall is formed by thin layer

process zone elements; 

(3) Dislocation labyrinth or network is

formed by thin prism-shaped process

zone, 

and (4) Volume defect is formed by 

void-shaped process zone element, which

may serve as the model for dislocation 

pattern junctions. They may be the sites 

for precipitates,dispersants, inclusions, or

voids.

Based on the hypothesis that the 

dislocation pattern at the early stage 

geometrically or topologically resembles

the pre-dislocation process zone mesh 

discussed above, or they are a subset of

the pre-dislocation process zone finite 

element mesh, by simulating the dynamics

of the process zone evolution, we may 

be able to trace and monitor the time 

evolution of dislocation patterns, and

hence the plasticity of the crystal.  Based

on this assumption, we impose additional

kinematic constraints on the pre-dislocation

process zone elements: The deformation

inside every bulk element is uniform or

homogeneous, whereas all the process

zone elements will undergo inhomoge-

neous deformations, because part of 

them are dislocation patterns.  In order 

to capture dislocation patterns we employ

higher order Cauchy-Born rule based

strain gradient theory.  These kinematic

conditions are reflected by the FEM inter-

polation functions used in different order of

process zone elements. In computations,

we add different bubble models in the 

higher order process zone elements 

(See: Fan and Li [15], Lyu et al.[16]), 

Urata and Li [17]) to provide a high order

displacement field.

As discussed above, the formation of 

dislocation patterns significantly relies on

the active slip systems [13].  Figure 4 (b)
and (c) show dislocation pattern formations

or dislocation cell structures, during cyclic

loading for FCC crystal (Copper and

Nickel) in different orientations in the 

stereographic triangle, which is compared

with the stereographic projections of

MCDD pre-dislocation pattern mesh in 

the same orientation Figure 4 (b) and (c) .

By comparison of Figure 4 (b) and (c), 
one may find that the experimental 

observations of dislocation pattern 

formations agree with that of MCDD 

Figure 3: 
(I) Comparison of substructure or formations of dislocation patterns
observed in fatigue experiments [13] and that obtained in 
MCDD simulations in different orientations; 
(II) Dislocation patterns in FCC crystal Cu and in BCC crystal 
obtained in MD simulations compared with the corresponding mesh 
of MCDD pre-dislocation meshes

Figure 4: 
(a) Stereographic triangle showing the 29 crystallographic 
orientations; (b) (c) Comparison of dislocation pattern formations and
substructures in different orientations with experiments [9, 14], 
and (d), (e), (f), contour plots of tensile and compressive yield stress
and the ratio of compressive stress and tensile yield stresses in 
different orientations [12]



iacm expressions 44/19    18

crystal plasticity itself.  Moreover, the 

classical plasticity may not be able to 

capture some fundamental aspects of the

physical phenomenon, i.e. the non-Schimid

stress. To simulate the local plastic 

deformation, we employed MCDD to 

simulate formulation of shear band.  

A copper specimen with size 

16nm x 16nm x 40nm is investigated.  

A constant velocity (corresponding to a

strain rate on the order of 1010/s is applied

at the top and bottom boundary along the

[001] direction as shown in Figure 5(a).  
In Figure 5 (b), (c), and (d), we display 

the formulation of shear band in (111)

plane, which is the corresponding slip

plane for FCC crystal.  This example

shows that MCDD has the ability to 

simulate dislocation nucleation and shear

band formulation.

Discussions

The main novelty of the multiscale crystal

defect dynamics is that it directly links

atomistic information with long-range order

dislocation pattern dynamics, so that it

allows us to establish an atomistically-

informed crystal plasticity theory based 

on dislocation pattern dynamics.  The main

developments of the multiscale dislocation

pattern dynamics based crystal plasticity

approach are:

1. Work hardening during plastic 

deformation of a crystal is associated 

with significant changes in dislocation 

microstructure.  The increase in 

dislocation density on the specimen is 

accompanied by the spontaneous 

emergence of regions of low dislocation

density and clusters of high dislocation 

density which to a large extent persist 

upon unloading.  These metastable 

structures are denoted as dislocation 

patterns.  The fundamental hypothesis 

of MCDD is that these dislocation 

microstructure depend on the original 

crystal microstructure, and one may 

identify possible defect pattern regions 

by geometrical analysis of the original 

crystal lattice;

2. The mathematical foundation of MCCD 

is based algebraic topology and 

exterior differential calculus.  The 

rigorous mathematical and physics 

foundation of MCDD renders it a 

precise quantitative scientific method 

or approach;

3. MCDD can relate the size-dependent 

plastic deformation to fundamental 

physics of defects, i.e. nucleation, 

multiplication, annihilation, interactions 

and transport of dislocations and 

materials’ microstructure.  In addition,

Figure 4 (b) and (c) show three types of

dislocation patterns of dislocation cell

structures observed in experiments, which

are compared with the MCDD mesh 

structure in the same orientation. 

Again, we can see that the remarkable

resemblance between the two in each

every orientations.

To demonstrate MCDD is an atomistically-

informed crystal plasticity theory.  We

employed MCDD to simulate anisotropic

plasticity at grain scale and to study 

the influence of crystal orientation on 

dislocation nucleation and slip system 

activation.

Crystal plasticity is an anisotropic inelastic

deformation theory. During mechanical

loading, crystalline material responses or

behaviors depend on both crystal

microstructure as well as the external load

orientations.  In the classical Taylor crystal

plasticity, dislocation motion in single 

crystals is thought to be governed by the

critical resolved shear stress (CRSS) via

Schmids law [18].  However, Taylor crystal

plasticity theory may still be considered 

as a phenomenological theory, because

the value of CRSS is either given on an

empirical value, or taken from the fine

scale first principle simulation, and it is 

not within a self-consistent framework of

“  multiscale crystal
defect dynamics ...

links atomistic 
information with
long-range order 

dislocation pattern
dynamics, 

... it allows us to
establish an 

atomistically-
informed crystal 
plasticity theory

based on 
dislocation pattern

dynamics..”

Figure 5: 
(a) MCDD pre-dislocation mesh, and formulation 

of shear band in (111) plane with strain 
(b) 2% (c)15% and (d) 15% and (d)25%.
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objects than molecular dynamics, and 

probably even than discrete dislocation 

dynamics, and

7. The spontaneous emergence of 

heterogeneous dislocation patterns 

is a conspicuous feature of plastic 

deformation and strain hardening of 

crystalline solids.  Currently, almost all 

dislocation pattern theories are 

empirical continuum theory.  The 

proposed multiscale crystal defect 

dynamics theory is derived based on 

atomistic molecular dynamics through 

systematic coarse graining procedures, 

and hence its physical modeling fidelity 

is significantly improved over other 

dislocation pattern models as well as 

discrete dislocation dynamics, while 

retaining almost the same or even less 

computation cost.  To the authors’ best 

knowledge, MCDD may be the first 

atomistically-informed dislocation 

pattern dynamics in the literature. l

vacancies;

4. It is an atomistically-determined 

formulation while preserving the 

continuum character.  MCDD model 

transcends length scale directly from 

nano meter scale to millimeter scale, 

which does not need any hierarchical 

modeling and computations;

5. As an atomistic-informed continuum 

formulation, MCDD preserves the 

well-possed mathematical structure of 

continuum physics by describing the 

problem as a rigorous initial-boundary 

value problem in terms of partial 

differential equations.  Moreover, the 

MCDD multiscale formulation minimizes

ad-hoc assumptions and free parame-

ters (as used extensively in strain-

gradient and other scale-dependent 

plasticity theories;

6. It provides a faster computational 

framework, and hence it has more 

feasible and applicable to macroscale 
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In the present article, the author would

like to present 3D-practical engineering

fracture mechanics analyses.  Many

engineers and researchers may believe

that meshing is a major obstacle in

3D-fracture mechanics analyses based on

the finite element method.  Generating a

3D-finite element model for an engineering

structure is not a trivial task, even today.

However, finite element models are creat-

ed daily from CAD data in the design pro-

cesses of engineering products, assisted

by automatic mesh generation software.

Engineers then perform finite element

analyses to evaluate their designs.

When cracks exist in a 3D-structure, there

is a tendency to think that the meshing is

troublesome.  The reason for this is that a

mesh with regularly arranged hexahedral

finite elements is generally required in the

vicinity of the crack front.  This is a strong

constraint in generating a finite element

model.  When we generate a 3D-finite 

element model for a structure using an

automatic meshing program, we generally

adopt tetrahedral finite elements.  In 

other words, the use of tetrahedral finite

elements is required when an automatic

meshing scheme is used.  Since crack

analyses generally require the use of hexa-

hedral finite elements, manual operations

by the analyst are necessary in order to

generate a finite element model for fracture

mechanics analysis.  In order to avoid

meshing, the eXtended finite element

method (X-FEM) and generalized finite 

element method (G-FEM) were proposed.

These methods became popular approach-

es to crack analysis [1, 2].  These methods

have increased in popularity.  On the other

hand, approaches based on the ordinary

finite element method have been proposed

[3, 4].  These approaches require special

care in their finite element discretizations in

the vicinity of the crack front such that reg-

ularly arranged hexahedral elements must

be placed.  These are popular approaches.

In this article, a somewhat simpler method

by which to deal with three-dimensional

crack problems is introduced.  Tetrahedral

finite elements are used even in the 

immediate vicinity of the crack front.

Research and development on a meshing

strategy has been carried out by Kawai et

al. [5] for structures with cracks.  The finite

element mesh consists of only tetrahedral

finite elements.  We refer to this approach

as a point-based method.  A group of

points representing the solid as a whole

and a surface patch are first supplied by

the analyst, as shown in Figure 1(a).  
The convex nodes and the surface patch

are extracted from a finite element mesh 

without any cracks.  In this process, a 

commercial finite element mesh generation

program may be used.  Then, an analysis

must supply a group of points representing

a crack and its vicinity, as shown in Figure
1(b). A small in-house program was written

for the present study.  Hence, the group 

of points for the crack and its vicinity are

inserted among the points for the whole

structure.  A constrained Delaunay tessel-

lation technique is then applied to generate

the mesh consisting of the tetrahedral 

elements, as depicted in Figure 1(c). 
The constrained Delaunay tessellation

technique avoids the generation of tetrahe-

drons that span both sides of the crack

face. Multiple crack problems, as shown in

Figure 2, can also be modeled without

much difficulty.  The distributions of the

mixed mode stress intensity factors were

computed by the virtual crack closure-

integral method (VCCM) [6] without any

Figure 1: 
Example of finite element

mesh generation. 
Group of points and a 

surface patch provided 
by the analyst and the

generated finite element
mesh.  This is an 

example for a reactor
pressurizer surge nozzle

(a) A group of points and surface patch for the 
whole structure

(b) A group of points for crack

(c) Finite element mesh (left: whole view, center: section with a crack and right: crack face)
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difficulty.  The results are also shown in

Figure 2.  The finite element mesh for 

the three-crack problem was created by

TSV-Crack [7], in which the crack mesh

option was developed following the 

success of the VCCM for quadratic 

tetrahedral finite elements [6].

Brief descriptions of methodologies for
computing the crack parameters and
example problems
Researchers and engineers may have

believed that hexahedral finite elements

must be placed in the vicinity of the crack

front due to methodologies for evaluating

crack parameters, such as stress intensity

factors, the energy release rate, and the 

J-integral.  Method for computing the crack

parameters include the VCCM, the virtual

crack closure technique (VCCT), the

domain integral (DI), and the equivalent

domain integral (EDI) method for the 

J-integral and the interaction integral

method.  When the integral domain is 

set for the EDI, we tend to assume that 

the domain must have a smooth outer

shape. For example, a cylindrical shape

is often assumed.  Then, hexahedral 

finite elements must be arranged so that

the integral domain can be set in a layer-

by-layer manner.  Hence, the integral

domain has a smooth shape. 

However, as described in Okada and

Ohata [8] and Dimon and Okada [9], the

smoothness of the outer shape of the 

integral domain and the use of regularly

arranged hexahedral finite elements in the

vicinity of the crack front are not essential

requirements in the domain integral

method.  The essential requirement is that

the virtual crack extension vector, which is

interpolated in the integral domain, must

be continuous and piecewise differentiable.

There is no essential requirement on the

outer shape or the arrangement of the

finite element mesh. 

Examples are shown in Figures 3 and 4.

Figure 3 shows an example of an integral

domain that has an angular outer shape,

and Figure 4 shows an example of stress

intensity factor evaluation under a mixed

mode load using an unstructured mesh,

Figure 2: 
Example of multiple crack analysis (finite

element model, stress distribution, and the
results of the SIF computations)

Figure 4: 
Example of computations of the stress

intensity factors using unstructured finite
element mesh

Figure 3: 
Example of an angular integral domain for the J-integral 
and interaction integral

(b) The distributions of the stress
intensity factors that were computed
by the interaction integral method.
Three different sizes were set for
the integral domain.  They gave
almost the same results

(a) Inclined embedded penny shaped crack in an infinite elastic body subject to the remote tension
and its finite element mesh. (left: the infinite elastic body with the embedded inclined penny shaped
crack, center: the whole view of finite element model, right: crack face and magnified view of the crack
that is modeled only one layer of crack face element

(a) Finite element mesh consisting of the quadratic 
tetrahedral elements (top left: whole specimen, 
top right: magnified view of the crack mouths and below: crack face).  
The round bar specimen is subject to a torsional torque

(c) The results of the computations of the stress intensity factors for the inclined 
three cracks (left, center and right).  “Theoretical” indicates the theoretical solutions for the embedded 
circular crack in an infinite elastic body under the respective tensile remote stress

(b) Distribution of the von-Mises stress in
the vicinity of the cracks. 
The color indicates the magnitude of the
stress.  Red is high and blue is low
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In the following, we apply hypotheses to

the computational crack propagation 

simulations, as presented in Sugawara et

al. [11].  During the welding processes, 

not only the weld residual stress but also

material anisotropy is produced. We 

introduce a hypothesis on the crack 

propagation rate.  The SCC (Stress

Corrosion Cracking) propagation may 

have some directional preference as a

result of the solidification rate of, for 

example, the weld metal and residual

stresses.  The material anisotropy can 

easily be assumed in the fatigue crack

propagation law.  An example is presented

in Figure 7(a).  The vector representing 

the crack propagation rate is decomposed

in the surface and depth directions and

then reassembled using various weights.

Figure 7 (b) shows the mesh and the 

variation of assumed stress in the thick-

ness direction. Figure 7(c) shows that 

due to the increasing stress in the depth

direction, the crack was found to take on 

a balloon-like shape when the anisotropic

crack propagation law was not adopted.

However, due to the influence of the

anisotropic crack propagation law, the

crack growth in the depth direction 

dominated that in the surface direction, 

as seen in Figure 7 (d).  The crack added

its depth only.  

The present technique was applied to a

large-scale finite element fracture mechan-

ics analysis, as seen in Arai et al. [12].

Figure 8 shows the finite element analysis

for a section of a nuclear pressure vessel.

A crack was assumed to emanate and

grow at the inner surface of the nozzle.

The configurations of the section and the

nozzle are presented in Figure 8.  A finite

element model for the section is presented.

The model has approximately 72 million

elements and 100 million nodes.  An SCC

propagation analysis under an applied

internal pressure was then carried out.

The crack grew as shown in Figure 8.

even in the vicinity of the crack front.  Only

one layer of discontinuity was inserted in

the unstructured mesh. 

On the other hand, crack propagation

problems have also been solved (see

Nose et al. [10]) using the VCCM [6] for

the tetrahedral finite element.  The VCCM

computes the stress intensity factors

based on energy change when the faces

of finite elements adjacent to the crack

front are virtually closed, as shown in

Figure 5.  In Figure 6, an example of 

a crack propagation problem of the 

pressurized surge nozzle for a nuclear

pressure vessel is shown.  Stress 

corrosion cracking (SCC) is assumed in

welded joints between dissimilar materials.

The growth of such cracks is driven by 

the weld residual stress.  In this analysis,

computationally predicted weld residual

stresses were applied. 

Figure 5: 
Concept of the VCCM.

The faces of finite 
elements are virtually

closed by nodal forces.
The energies required in

order to virtually close the
element faces are related
to the energy release rate

GI and the stress 
intensity factor KI. 
Here, the mode I 

problem is considered 
as an example

Figure 6: 
Example of analysis of

SCC propagation driven
by the weld residual

stress

(a) The finite element mesh that was used to perform an analysis on SCC propagation 
driven by the weld residual stress (left: whole view, center: section of including the crack face
and left: the magnified view of the initial crack)

(b) The result of SCC propagation analysis.  The shapes of crack after its propagation are
superposed on the distribution of the weld residual stress
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Development of the present software 
system

The crack and crack propagation software

consist of a number of loosely coupled 

programs and shell scripts to perform

mesh generation, FEA preprocess, FEA,

and FEA postprocess, for example.  

We refer to these analysis phases.  The

general flow chart of the analysis system 

is shown in Figure 9.  There are a number

of short programs and shell scripts to 

perform tasks in the analysis system.

Therefore, they can be modified easily in

the laboratory.  Moreover, standardized

data formats and structures, such as nodal

coordinates, element connectivity, and

boundary conditions, are used to describe

data.  Thus, programs to carry out certain

analysis tasks, such as computing the

stress intensity factors, can be changed.

For example, the VCCM [6] and the 

interaction integral method of Daimon and

Okada [9] can be used to compute the

stress intensity factors.  Programs for both

of these methods use almost the same

standardized input dataset.  Therefore,

they are exchangeable.  In addition, such

as the influence of the crack face load,

options can be added to the programs by

the analyst.  The finite element programs

are also exchangeable.  The default option

in our software system is Adventure Solid

[13], which is open-source FEA software

for large-scale computations.  Using a

small data translator, we may use 

commercial FEA software, such as

MSC.Marc or NASTRAN.

Conclusion
In the present article, examples of fracture

mechanics analyses using the ordinary

finite element method were presented.

The point-based mesh generation scheme

was briefly introduced.  This method can

generate a mesh with cracks consisting 

of only tetrahedral finite elements.  

Such finite element meshes have been

considered unsuitable for crack analysis.

Hence, methodologies that can accurately

compute stress intensity factors using

meshes consisting of tetrahedral elements

Figure 7: 
Fatigue crack propagation under the

anisotropic crack propagation law and
increasing stress amplitude in the crack

growth direction

Figure 8: 
Example of large-scale crack 

propagation analysis

(a) Hypothesis on the crack propagation rate.  Left: Crack propagation is assumed perpendicular 
to the crack front. center: The rate of crack propagation in the surface direction is set to be 
1/10 of its original magnitude.  The vector of crack propagation is assembled again. and right:  
The vector of crack propagation is projected to the normal direction of the crack front. 
Then, the crack propagation analysis is carried out

(b)  Finite element mesh and the dimensions of the plate for which the crack is assumed (left)
and the assumed amplitude of fatigue load (right)

(d) The results of crack
propagation analysis
under the hypothesis 
of anisotropic crack
propagation law.  
The crack extends to
the depth direction

(b) The large scale finite element model containing more than 100 million nodes and the evolution
of the crack face as the result of SCC propagation analysis. SCC was assumed to be driven by
the applied internal pressure on the inner wall of the pressure vessel and the nozzle and on the
crack faces

Initial          9 years          66 years            92 years           115 years

Initial         7 years       20 years         30 years           32 years

(c) The results of crack
propagation analysis
under the isotropic
crack propagation law.
The crack grew to be a
balloon-like shape

(a) The configurations and the simplified CAD drawing of nuclear pressure 
vessel.  Left: The general configuration of the nuclear pressure vessel [14].
Center:  The section of nozzle part and Left: CAD drawing of a quarter 
section part containing the nozzle.  A crack was assumed to exist the 
inner wall of the nozzle part
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only were developed and briefly discussed

in the present article.  Since certain 

methods allow us to use the unstructured

mesh, even in the immediate vicinity of 
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Figure 9: 
General flow chart of the 

crack propagation 
analysis system

the crack front, such 

methods can be used to

solve large-scale problems,

as shown in the last 

example problem that was

presented. 

Finally, the software 

development strategy in 

our laboratory environment

is briefly described.  We 

are developing our method-

ologies under a software

platform that loosely 

connects programs and

shell scripts, including 

in-house programs/scripts

and commercial/open 

software.  Development

continues in order to

achieve more realistic fracture simula-

tions that can be used for the analysis 

of structural integrity assessment of 

engineering structures. l
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It has been a long time since I enjoyed so much reading a mathematical book.  This 

book makes a delightful reading for researchers from the Computational Mechanics (CM)

community with a reasonable amount of mathematical orientation and an interest in inverse

problems (IPs).  It has exactly the blend of rigorous analysis, practical examples and clear

explanatory text that is very satisfactory, at least to my personal taste.  In addition, it is 

written in a fluent, definitely non-dry style, despite the heavy technical content, which makes

it an excellent reading material and not just a good reference text.  The many examples 

and illustrations throughout the book contribute to its readability. Each chapter ends with 

a sequence of well-designed exercises.  

The book does not intend to survey many known methods for solving IPs, but concentrates

on a small number of general techniques, i.e., least squares, regularization, SVD and the

adjoint method, which are useful for IPs in most application fields.  The author "warns" the

reader in the Preface that "this book is aimed at readers with rather substantial mathemati-

cal and scientific computing background, equivalent to masters in applied mathematics."

Indeed, the book assumes more than basic knowledge in fields like linear algebra, PDEs,

variational formulations, functional analysis and operator theory (e.g., compact operators

play an important role here, and Appendix 3 gives a brief survey of results).  Being aware of

the high level of mathematics of engineering students in top schools in France, this warning

may be intimidating for readers from other countries.  Nevertheless, owing to the way the

book is written, I believe that it will be accessible to many CM community members. 

As defined on p.3, whereas "direct problems", which are the problems solved most of the

time, seek the effects generated by given "causes", IPs seek the causes knowing the

effects.  Figures 1 & 2 illustrate the setup of three IPs related to wave problems, i.e., 

determining the composition and geometry of the sea bottom, and determining the structure

(voids, faults, etc.) and rock properties under the earth surface. Mathematically, IPs are

notoriously difficult because they are typically ill-posed.  Well-posedness includes three

ingredients: existence (there exists a solution to the problem), uniqueness (there is only 

one solution) and stability (small changes in the data cause small changes in the solution).

IPs almost always suffer from the lack of at least one of these ingredients.

The book comprises three parts. In the first part (chapters 1 and 2), the general properties

of IPs are discussed and examples for various types of IPs are given.  The examples

include determining a past temperature field 

from measurements at present (which is a 

desperately unstable problem); finding the 

heat conductivity from partial temperature 

measurements; problems in hydrogeology 

(flow in porous media) such as determining the

amount of pollution in the fluid, seismic exploration

(as in Fig. 2); medical imaging; gravimetric

prospecting; and ray tracing.  The latter examples

are described by an integral equation of the first

kind, which is the prototype of linear IPs.

Numerical Methods Numerical Methods 
for Inverse Problemsfor Inverse Problems
Michel KernMichel Kern
ISTE & Wiley, London, UK ISTE & Wiley, London, UK 
and Hoboken, NJ, USA, 2016 and Hoboken, NJ, USA, 2016 
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The seismic exploration problem is described using the simplest

model, namely the acoustic wave equation. Indeed, this is the

first model used in solid-earth geophysics when testing a new

solution approach.  The models can become gradually more

complicated and more realistic: linear elasticity in a homoge-

neous isotropic medium, heterogeneous medium, anisotropic

medium, porous medium, etc.  The author makes an interesting

remark in this context: "it is not obvious that a refined model will

be superior to the model we have just mentioned [i.e., the

acoustic model]."  Namely, if we do not have enough informa-

tion (obtained by measurements) that would allow us to solve

the IP, complicating the model (say, from acoustics to elasticity)

may not be a good idea.  While this is true, the author's conclu-

sion that "our [acoustic] model may represent a reasonable

compromise" may create the wrong impression that solid-earth

geophysicists are content with acoustic models.  In fact, 

geophysicists would rarely be satisfied from the results of this

model alone; they would almost always solve later the more 

realistic IP problem of elasticity, while making sure that they 

have sufficient data for a successful solution. 

Part 2 (chapters 3-5) concentrates on the integral-equation IP.

The main motivating application is that of gravimetric prospect-

ing, in which the densitiy of the rocks making up the earth 

structure is determined based on measurements of the earth’s

gravitational field.  Two discretization methods for integral 

equations are described: quadrature collocation and Galerkin

(the latter giving rise to a double integral).  Then comes the

realization that these methods, when applied directly to the IP,

do not lead to convergence. In fact, the results become worse

when refining the discretization.  This is the outcome of the 

ill-posedness of the IP.  The lesson is that one cannot attack

head-on an ill-posed IP with standard solution methods.

Chapter 4 discusses the solution of least squares (LS) 

problems, which are at the heart of IPs, and the use of Singular

Value Decomposition (SVD) to this end.  Both the finite-

dimensional case (matrices) and the infinite-dimensional case

(operators) are discussed.  The latter is much more complicated

than the former, not just more technically involved.  The SVD

becomes SVE (E for Expansion) in the operator case. 

One may raise the following question.  In solving an IP, which is better: to first apply a 

solution method at the continuous level (operators) and only then to discretize and solve, or 

to discretize everything from the outset and then to apply a solution method at the discrete

level (matrices)?  This question, which, in fact, can be asked in various other contexts as 

well, is not discussed in the book.  My tendency is to prefer the former, since I believe that 

it is best to postpone the discretization as much as possible.  On the other hand, the latter

approach may be easier to implement and requires less mathematical insight. 

Chapter 5 discusses the important subject of regularization. Two common regularization

methods are discussed: Tikhonov's method and spectral truncation.  Regularizing an IP

means converting the original ill-posed problem into a well-posed problem.  The price of 

doing this is that one actually solves a different problem than the given IP, but hopefully a 

sufficiently similar one. As the author explains, we partly scarify accuracy in order to gain 

stability.  This is nicely demonstrated by Figure 3 (which is Fig. 5.1 in the book), where ε2

is the Tikhonov regularization parameter and δ is the error in the data.  If ε is too small, the

problem is still very sensitive and the total error is large, whereas if ε is too large, the problem

is overly regularized, which results in a large error.  As the figure shows, there is a value of ε

which is optimal.  A nice discussion follows on how to pick the value of ε in practice, including

a theoretical analysis and some examples. Figure 4 (which is Fig. 5.2 in the book) shows that

values between 10-3 and 1 lead to a good approximation.  The chapter ends with a class of

regularization methods based on iteration. 

Figure 2: 
NASA tomographic image of the subducted Farallon
Plate in the mantle beneath eastern North America.
From Wikipedia, "Seismic tomography", public
domain.

Figure 1: 
Equipment used for marine seismic surveys. 
From Wikipedia, "Reflection seismology", 
by Hannes Grobe, Alfred Wegener Institute - 
Own work, sharing permitted.



Part 3 (chapters 6-8), which is beautifully written, deals with parameter identification problems.

These IPs are typically governed by a PDE (or a system of PDEs), where the unknown 

'parameter' is a coefficient in the PDE which may be a function of space and/or time.  

A reoccurring example is that of determining the (non-uniform) heat conduction based on 

temperature measurements.  What makes the IP nonlinear is the nonlinear relation between 

the unknown parameter and the measurements.  The theory about such problems is scarce,

hence this part focuses on the numerical methods. 

Chapter 6 focuses on the adjoint method, which is a variational method to calculate the 

gradient of the LS cost function in an efficient way.  The author compares the adjoint method to

the sensitivity method, which is a more straight-forward method but calculates the gradient less

efficiently.  Whereas the latter needs to solve the state (direct) problem N times per iteration,

where N is the number of unknown parameters in the discrete problem, the adjoint method

achieves the same goal by solving only two problems per iteration: a state problem and an

adjoint problem. The latter is always linear, even if the state equation is nonlinear.  The chapter

includes, in addition to the natural derivation of the adjoint method by differentiating the state

equation with respect to the parameter, a derivation based on the Lagrangian.  I like this way 

of derivation less, since it has the disguise of a Lagrange multiplier method (LMM), whereas in

fact it is not, since in the LMM the Lagrange multiplier is an unknown, and one cannot freely

"choose" it to satisfy a certain relation, as is done here.  The author is careful enough to call 

this "a trick".

Chapter 7 contains many examples for parameter estimation problems, employing the adjoint

method.  The optimization is done using the techniques described in Appendix 2, mainly BFGS

and Gauss-Newton.  Chapter 8 briefly discusses additional topics, most notably the statistic

approach and Bayesian inversion.  

Here and there, the text includes English oddities typical to French speaking scientists, like

derivation instead of differentiation (p. 7), note instead of denote (p. 11, p. 49), 'as soon as'

instead of 'as long as' (p. 33), still instead of again (p. 40), definite positive instead of positive

definite (p. 51, p. 187), application instead of mapping (p, 111), 'the condition is verified' 

instead of 'the condition is satisfied' (p. 189), and even 'et' instead of 'and' (p. 188).  These 

slight mistakes are completely harmless, and some would say that they are even charming 

(like speaking English in a French accent).

More serious than this, unfortunately, are the many typos scattered in the text and the 

equations.  I will mention only one example out of many: in eq. [2.14], the third equation

includes a vector term which should be scalar (the divergence).  Incidentally, the IP described 

in relation to eq. [2.14] does not make much sense, since it is obtained by omitting some 

information from the well-posed direct problem without compensating this omission by any 

extra information. Despite the slight inconvenience caused by the many typos, this should not

deter one from reading this excellent book.  Hopefully the author will publish an errata list, and 

a better proofing job will be done for the second edition. 

In summary, this is a highly recommended book for CM researchers who are interested in

inverse problems or wish to be introduced to the subject. l
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Figure 4: 
Choosing the Tikhonov regularization parameter value. 
This is Fig. 5.2 in the book, p. 81

Figure 3: 
The stability-accuracy tradeoff in 
regularization of IPs. 
This is Fig. 5.1 in the book, p. 76
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The 13th World Congress on

Computational Mechanics was held

in New York City on July 22-27, 2018.

A highlight of the conference was a

symposium dedicated to honoring

Professor Thomas JR Hughes at the

occasion of his 75th birthday.  This

special symposium was a tribute from

friends, colleagues, former students

and associates of Tom Hughes to his

numerous pioneering contributions to the

field of Computational Mechanics, and

for his leadership in establishing

Computational Mechanics as a

fundamental Discipline in Engineering

and Sciences.  This event was organized

by a committee comprised of former

students of Professor Hughes that

included Arif Masud, Wing Kam Liu,

Isaac Harari, Yuri Bazilevs, Alessandro

Reali, and Greg Hulbert. 

The symposium had nine sessions that

were loosely grouped into themes that

represented the wide spectrum of Tom’s

contributions to the field. It had a strong

line-up of speakers, ran from Monday 

to Wednesday, and attracted a large 

audience.  Sessions included talks from

friends, colleagues, former students and

associates of Tom and reflected the 

contributions he made directly, the 

contributions he made through the 

students he trained and associates he

guided, and the contributions made by

friends and colleagues he inspired.  

Talks also contained memorable photos

and anecdotes from Tom’s personal and

professional life.  Yuri Bazilevs composed

and, as part of his presentation, recited 

a poem in honor of Tom titled “Ode to 

TJR Hughes”:

Symposium to Honor 
Professor Thomas JR Hughes 
on his 75th Birthday at WCCM 2018

Figures Top and Right:
Symposium presentations

by
Arif Masud

Yuri Bazilevs
Alessandro Reali

Wing-Kam Liu
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At the banquet Tom was presented with 

a “Book of Comments” from his friends,

students, and collaborators, about his

research and what it meant to them 

personally and for the field of mechanics

in general.  Elizabeth Hughes, Tom’s

youngest daughter, did a fantastic job 

in putting the book together and adding

pictures of the Hughes family that gave 

it a personal touch.  At the closing of the

event, Wing Kam Liu, Arif Masud, Yuri

Bazilevs, JS Chen, and Alessandro 

Reali spoke on behalf of Tom’s groups 

at Caltech, Stanford, Austin, students of

Tom’s close friend and collaborator 

Ted Belytschko, and students and 

colleagues from Tom’s group who are 

now in Europe.  Tom also gave a touching

speech, and expressed his gratitude to

everyone who made his 75th birthday 

celebration so memorable. l

Among the three “T” ’s 
Of Computational Mechanics,
Two are in Texas, 
And one is in the Heavens.

TJR Hughes, in “The City” born and 
raised,

Left for the Golden State, quite un-phased.
He found himself in a progressive’s nest,
And challenged some FEM problems left 

unaddressed.

Then, shells stopped locking,
Contact started working,
Time marching was enabled,
And fluids got stable!

Bay Area tech bubble
Brought in minor trouble.
Yet Texas came kneeling,
And… CAD needed healing.

Thus, IGA was born,
And, to much scorn,
After many persuasions,
It accrued some citations.

So, is it Math or Engineering?
It’s in BOTH that we are hearing
Impact great and so far reaching,
The naysayers can’t stop bitching.

But, no resting on the laurels,
No time to count the cash,
Keep living for tomorrow,
And make another splash!

The three-day birthday symposium culmi-

nated in a reception and banquet that

were generously sponsored by the

Livermore Software Technology

Corporation (LSTC).  

Figures Top and Left: 
Symposium banquet
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Two Priority Programmes Related to GACM Two Priority Programmes Related to GACM 
by the German Research Foundation (DFG)by the German Research Foundation (DFG)

“A particular feature of the Priority Programme is the nationwide collaboration

between its participating researchers.  The DFG Senate may establish Priority

Programmes when the coordinated support given to the area in question promises to

produce particular scientific gain.  As a rule, Priority Programmes receive funding for

a period of six years.” [http://www.dfg.de/en]

SPP 1897: Calm, Smooth and Smart – Novel Approaches for InfluencingSPP 1897: Calm, Smooth and Smart – Novel Approaches for Influencing
Vibrations by Means of Deliberately Introduced DissipationVibrations by Means of Deliberately Introduced Dissipation

In 2015, the German Research Foundation (DFG) has

approved a Priority Programme (SPP), entitled “Calm,

Smooth and Smart – Novel Approaches for

Influencing Vibrations by Means of Deliberately

Introduced Dissipation“.  The programme is scheduled

to run for six years.  The joint work in the Priority

Programme started with a kick-off meeting in

September 2016 and end of 2019 the second funding

phase will start.

The aim of achieving a “calm, smooth and smart” behaviour of technical systems is

driven forward by an interdisciplinary group of about 15 closely cooperating projects

from the fields of mechanics, mathematics, control theory, tribology, fluid mechanics,

and material sciences.  In this context, “calm” represents the demand to avoid or at

least to severely reduce unwanted noise, “smooth” ensures a still comfortable and

jerk free operation, and “smart” means that the introduced damping devices not only

help to achieve the desired vibrations behaviour, but also that they take over addi-

tional functional tasks.  This contributes to the urgent needs of innovative approaches

to minimize the vibrations of the increasing number of lightweight constructions.

Since there is only a limited knowledge on most physical dissipation phenomena

available, one focus is on the understanding and modelling of damping phenomena

and damping devices, making it possible to take dissipative effects into account in

early design states.  Another focus is led on numerous practical applications.  For

example, the reduction of brake squeal reduces the noise pollution for humans and

the environment or particle dampers can reduce vibrations over large frequency

ranges.

Coordinator: Prof. Peter Eberhard, Stuttgart
Homepage: www.itm.uni-stuttgart.de/spp_css

SPP 2020: Cyclic deterioration of High-Performance Concrete in anSPP 2020: Cyclic deterioration of High-Performance Concrete in an
Experimental-Virtual Lab Experimental-Virtual Lab 

The Priority Program SPP 2020 started in June 2017

with scientists from thirteen Universities with overall

twelve research projects.

Nowadays, modern high-performance concrete allows

even lighter, more filigree and resource-efficient 

structures which, however, are more susceptible 

to vibrations due to their reduced dead weight.
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for all inclusions under gacm please contact:
Michael Kaliske

gacm@mailbox.tu-dresden.de

8th GACM Colloquium8th GACM Colloquium
on Computational Mechanicson Computational Mechanics

he 8th GACM colloquium on computational

mechanics for young scientists from academia

and industry, the colloquium of the German

Association on Computational Mechanics

(GACM) will be organized on August 28 - 30,
2019 in documenta city Kassel, Germany.  

The colloquium is hosted by the Institute of

Structural Mechanics and the Institute of

Mechanics of the University of Kassel.  It intends

to bring together young scientists who are

engaged in academic and industrial research

on Computational Mechanics and Computer

Methods in Applied Sciences. 

For further information, please see the conference webpage: 

www.uni-kassel.de/go/gacm2019

Structures and components – such as long-span bridges for high-speed trains, 

wind-power plants and machine foundations – are also typically subjected to very

large variable loads and very high numbers of load cycles.  The fatigue behavior 

of high-performance concrete is decisive for the successful design and the 

realization of such applications.  The designed aim of this program is to capture,

understand, describe, model and predict the material degradation of high-

performance concrete using the newest experimental and virtual numerical 

methods.  Since the damage processes occur on a very small scale, they cannot 

be entirely observed during the load tests.  Therefore, the desired results are 

developed from a close cooperation between the material science and the numerical

mechanics knowledge, which is the interconnection of experiment and computation 

in an Experimental-Virtual-Lab.  The material degradation can be observed through

the multiscale numerical-models calibrated on the basis of suitable damage 

indicators recorded during the experiments.  Besides the classical macroscopic

fatigue tests, these indicators are selected among modern measuring technology 

and microstructural investigations like Ultrasonic Analysis, Computer Tomography,

REM und TEM-Microscopy, whose recording makes the already time-consuming

fatigue test a demanding issue.  

The numerical-modelling description of the heterogeneous concrete microstructure

as well as the damage and crack developing at different scale levels over several

hundreds of load cycles present particular research challenges in this priority 

program.  To this extent, some numerical methods used are Finite Element, 

Voxel FE, Interface FE, Bonded-Particle Model, XFEM, whereas the crack 

developing is described, for example, through Phase Field Theory, Cohesive

Interface Models, Continuum Damage Mechanics and Fracture-Based Plasticity

Approach. Finally, in some cases, multifield models are developed in order to 

consider the interaction with the temperature or water flow field with the mechanic

field.

Coordinator: Prof. Ludger Lohaus, Hannover
Homepage: www.spp2020.uni-hannover.de



Chinese Conference on Computational Mechanics 2018 Chinese Conference on Computational Mechanics 2018 
in conjunction with

International Symposium on Computational Mechanics 2018International Symposium on Computational Mechanics 2018
successfully held in Nanjing, China

August 19-23, 2018

Chinese Conference on Computational Mechanics 2018 (CCCM2018) and International

Symposium on Computational Mechanics 2018 (ISCM2018) were successfully held at Nanjing,

China on August 19-23, 2018.  The CCCM-ISCM 2018 was organized by Chinese Association

of Computational Mechanics (CACM) and was locally organized by Hohai University and

Jiangsu Society of Theoretical and Applied Mechanics.  Prof. Zhuo Zhuang from Tsinghua

University, Prof. Yao Zheng from Zhejiang University, and Prof. Qing Zhang from Hohai

University, were co-chairs of the conference.

This conference was mainly aimed to promote the comprehensive and deep academic

exchanges and discussions on the research and applications of computational mechanics 

both in China and around the world.  More than 700 delegates from China, US, UK, Australia,

Germany, France, Singapore, etc. attended the conference.  This conference received 549

abstracts, set up 68 parallel sessions covering 29 topics, and set 550 oral reports including 

17 plenary lectures.

The opening ceremony of the conference was presided by Prof. Qing Zhang and 

Prof. Hui Xu, the President of Hohai University, delivered a welcome speech on behalf of the

local organizer. Prof. Zhuo Zhuang, the President of CACM, delivered a welcome speech on

behalf of the organizer.

Prof. Wanxie Zhong, the academician of Chinese

Academy of Sciences, from Dalian University of

Technology, China, Prof. Wing Kam Liu, the Chairman

of International Association of Computational

Mechanics (IACM), from Northwestern University,

USA, Prof. Chuanzeng Zhang, Member of the

European Academy of Sciences and Arts, from

Siegen University, Germany, Prof. Chongmin Song,

from University of New South Wales, Australia,  

Prof. Fangsen Cui, from Institute of High Performance

Computing, Singapore, Prof. Zhiqiang Feng, from

University of Evry, France, Prof. Qingping Sun, 

from The Hong Kong University of Science &

Technology, Hong Kong, China, Prof. Chenfeng Li,

from Swansea University, UK, Prof. Hongwu Tang 

from Hohai University, China, Prof. Jiun-Shyan Chen

from University of California, San Diego, USA, 

Prof. Guirong Liu from University of Cincinnati, 

USA, Prof. Shaofan Li from University of California,

Berkeley, USA, Prof. Song Fu from Tsinghua

University, China, Prof. Xikui Li from Dalian 

University of Technology, China, Prof. Bo Wang 

from Dalian University of Technology, China, Prof.

Dongdong Wang from Xiamen University, China, 

Prof. Yao Zheng from Zhejiang University, delivered

the plenary lectures, respectively.

During the CCCM-ISCM2018 conference, the 

awarding ceremony for three awards was held.  

The CACM Life Achievement Awards were granted to
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Chinese Association of Computational MechanicsChinese Association of Computational Mechanics

Figure 1:
Prof. Qing Zhang, the Co-Chair of the conference 

presided the opening ceremony

Figure 2:
Prof. Hui Xu, the President of Hohai University 

delivered a welcome speech on behalf of 
the local organizer on the opening ceremony



iacm expressions 44/19   33

Prof. Wanxie Zhong, Dalian University of Technology, Porf. Junzhi Cui, Academy of Mathematics

and Systems Science, Chinese Academy of Sciences, Prof. Mingwu Yuan, Peking University,

and Prof. Zhenhan Yao, Tsinghua University. Winners of the Achievement Award and the 

Young Investigator Award of the 5th Qian Ling-Xi Awards for Computational Mechanics were

Prof. Yao Zheng, Zhejiang University and Prof. Bo Wang, Dalian University of Technology,

respectively. 
by

Qing Zhang, Lie Wang, Zhuo Zhuang

Figure 3:
Prof. Zhuo Zhuang, the Chairman of CACM, delivered a
welcome speech on behalf of the organizer on the
opening ceremony

Figure 4: 
Prof. Yao Zheng delivered the plenary lecture

Figure 5: 
Prof. Wing Kam Liu delivered the plenary lecture, who is
the Chairman of International Association of
Computational Mechanics (IACM), from Northwestern
University, USA

Figure 7: 
Picture of the conference room

Figure 8: 
Picture of the conference room

Figure 6: 
Prof. Wanxie Zhong delivered the plenary lecture, who is
the academician of Chinese Academy of Sciences, from
Dalian University of Technology, China

for all inclusions under CACM
please contact 
Zhuo Zhuang

zhuangz@mail.tsinghua.edu.cn
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- Trends and activities of JSCES -

On behalf of the Japan Society for Computational Engineering and Science

(JSCES), I would like to introduce the recent trends and activities as the

Japan’s biggest organization in the field of computational mechanics.

First of all, the JSCES renewed the Executive Council in May 2018 after the 

elections, which is formed by the following members (two-year term in the 

JSCES’s bylaws): T. Yamada (Yokohama NU, President), M. Fujisaki (Fujitsu, 

Vice-President), K. Yuge (Seikei U, Vice-President), J. Matsumoto (AIST, Secretary

General), S. Fujikawa (Mazda), S. Hagihara (Saga U), H. Hasegawa (Shibaura IT),

D. Isobe (U Tsukuba), J. Kato (Nagoya U), H. Miyachi (Tokyo City U), K. Nagano

(Mizuho IR), T. Nagashima (Sophia U), S. Nishiwaki (Kyoto U), S. Okazawa 

(U Yamanashi), M. Sakuraba (Nippon Koei), H. Sakurai (Shimizu), R. Shioya 

(Toyo U), M. Takagaki (RTRI), N. Yamasaki (NSSMC), H. Watanabe (MSC), 

K. Terada (Tohoku U, inspector), Y. Umezu (JSOL, inspector).

At present, the JSCES has 1085 individual members and 82 corporate

members.  The individual members come from 60% of universities and

research institutes and 40% of industries.  In recent years, the Executive

Council has been devoting much effort to increase corporate members

and individual members belonging to industries.  For one of such activities,

benefits of corporate membership are clarified and widely disseminated.

Moreover, the Research Committee of JSCES operates Study Groups for

HQC (High Quality Computing), PSE (Problem Solving Environment),

Hypercomplex Disaster Simulation, Modeling and Simulation Methods of

Uncertainties, Benchmarks, Education of Computational Mechanics,

Development of Model Base of Automobile Structures to exchange infor-

mation among the members and cooperation between academia and

industries.

by: Takahiro Yamada - Figure 1

Summer Camp for Students

“The summer camp for students 2018”, a successful series hosted by JSCES 

from 2013, was held during September 8-9, 2018.  This year, 24 students from 

various universities throughout Japan gathered in Nagatoro, which is a scenic town

in the mountains of Saitama Prefecture (Figure 2).  During this camp, 17 students

presented their ongoing researches, and five keynote speakers gave talks on their
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Daigoro Isobe
isobe@kz.tsukuba.ac.jp

research experiences in universities, national laboratories and industry (Figure 3).

The best presentation awards were given to three students (Mr. Nakayama, Mr.

Aida and Mr. Tezuka) from Prof. Yamada, the President of JSCES (Figure 4).

Attendees enjoyed a barbeque dinner after the lecture meeting and built good 

relationships through communication in a relaxed atmosphere.

by: Naoto Mitsume

Study Group on Automobile Structural Model-Based Development

There are segmentation design items for automobile development.  Performance

evaluations have achieved large progress in experimental and computational 

simulation.  Deriving a multipurpose optimum solution with plural objective 

functions of the performance evaluation will be indispensable in future.  In addition,

by introducing initial design, costs and the other various constraint conditions,

these optimizations should be extended to effective automobile model-based

development.  In the above background, this study group establishes 

a cross-field academic research organization.  The current number 

of members is approximately 30, including industrial, academic and

government researchers.

The main event is exchange of ideas, opinions, problems 

and technologies of automobile structural model-based 

development for researcher, engineers and students in

automobile development, computational science and 

engineering, mathematics, and so on.  In annual 

conference of JSCES, this study group provides an 

organized session for discussing ideas on recent advances in 

areas related to computational methods, numerical modelling for automobile model-

based development (Figure 5).

by: Shigenobu Okazawa

Prof. Yoshiaki Yamada

Prof. Yoshiaki Yamada passed away in Tokyo, Japan on June 26, 2018, in his age

of 96.  He was one of the leaders and pioneers of nonlinear finite element method

society.  One of the largest achievements 

in his career was development and implemen-

tations of elasto-plastic constitutive equations

in finite element methods.  The outcomes 

have been widely used in various commercial

codes and have helped to investigate physical

phenomena and to create numerous product

designs.  We express our deep and sincere

condolences to his family (Figure 6).
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For all inclusions under 
JACM news 

please contact:
Hiroshi Okada

hokada@rs.noda.tus.ac.jp

The Japan Association for Computational Mechanics (JACM) is a union of

researchers and engineers working in the field of computational mechanics

mainly in Japan.  JACM is a loosely coupled umbrella organization covering

29 computational mechanics related societies in Japan through communication

with e-mail and web page (https://ja-cm.org/index-e.html).  The number of

individual members is about 310. JACM members actively participate the

IACM activities.

On July 25th, 2018, the 2018 JACM annual meeting and award ceremony 

were held on the occasion of the WCCM XIII and PANACM II, New York, USA

(Figure 1).  In the award ceremony, the award winners received their certificates

from Prof. H. Okada (President of JACM, Figure 2).  The other award winners

are presented with their photographs (Figures 3 and 4).  

In 2018, The JACM Computational Mechanics Awards which are the highest

awards were presented to Profs. Chisachi Kato (UTokyo), Kikuo Kishimoto

(Tokyo Inst. Tech.) and Yoji Shibutani (Osaka Univ.).  The JACM Fellows Awards

were presented to Profs. Yohsuke Imai (Osaka Univ.), Takayuki Yamada (Kyoto

Univ.) and Tomonori Yamada (UTokyo). The JACM Young Investigator Award

were presented to Profs. Kazuya Shibata (UTokyo), Takahiro Tsukahara (Tokyo

Univ. Science) and Tinh Quoc Bui (Tokyo Inst. Tech.).  

Figure 2: 
JACM Award for Young 

Investigators in Computational 
Mechanics winners with 

Prof. H. Okada in 
the award ceremony 

(a) Prof. Kazuya Shibata 
(UTokyo), 

(b) Prof. Takahiro Tsukahara 
(Tokyo Univ. Science) 

and (c) Prof. Tinh Quoc Bui 
(Tokyo Inst. Tech.)

Figure 3: 
Computational Mechanics Award: 

(a) Prof. Chisachi Kato 
(UTokyo), 

(b) Prof. Kikuo Kishimoto 
(Tokyo Inst. Tech.) 

and (c) Prof. Yoji Shibutani 
(Osaka Univ.)

Figure 1: 
2018 JACM annual meeting

group photo

(a) (b) (c)

(a) (b) (c)
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Figure 4: 
Fellows Award: 
(a) Prof. Yohsuke Imai 
(Osaka Univ.), 
(b) Takayuki Yamada 
(Kyoto Univ.) 
and (c) Tomonori Yamada 
(UTokyo)

At the annual meeting, the JACM members discussed the current state of the

JACM and future plans and events such as APCOM VII in Taipei, held in

December 2019 and COMPSAFE2020 (3rd International Conference on

Computational Engineering and Science for Safety and Environmental Problems,

an APACM Thematic Conference & IACM Special Interest Conference) in Kobe,

Japan, held in March 2020.

Figures 5:
A night view of Kobe. 
(© KOBE TOURISM
BUREAU)

Upcoming Events

The JACM and JSCES (The Japan Society for Computational Engineering 

and Science) will jointly host the 3rd International Conference on
Computational Engineering and Science for Safety and Environmental
Problems (COMPSAFE2020) which will be held during March 8-11, 2020,

in Kobe, Japan (Figure 5).  This conference series is an APACM Thematic

Conference and an IACM Special Interest Conference, aimed to bring together

researchers and scientists from all over the world, who fight daily in the field of 

disaster prevention and mitigation, structural and material failure, safety and 

security maintenance, and so on.

Please note that the minisymposium proposal and the abstract submission are

due on June 30, 2019 and October 31, 2019, respectively. For further information,

please check www.compsafe2020.org.  l

(a) (b) (c)
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for all inclusions under UKACM please contact 
Charles Augarde 

charles.augarde@durham.ac.uk

A Tale of Two ConferencesA Tale of Two Conferences

Only a few weeks apart this summer, I attended two major conferences: WCCM in

New York and the ECCOMAS ECCM-ECFD Conference in Glasgow.  I don’t think 

we have too much to worry about in terms of interest in our area, given the large 

numbers of participants.  At Glasgow over 1900 attended from 52 different countries,

including 656 students.  In New York the attendance was much higher.  Both events

were well-organised and I’d like to highlight an innovative feature of each. 

In Glasgow, as well as an outstanding Appreciation Dinner at Kelvingrove Art Gallery

(left), one of the evenings was enlivened by a “Science Slam” which took place in a

converted church close to the University.  This was not an event to arrive at without 

a sense of humour as it was an opportunity for established academics and students 

to show their informal side, by trying to explain an aspect of their research, or to pose

a provocative question, to an audience in an atmosphere akin to a comedy club.  

I still have no full answer to the question posed by one of Computational Mechanics’s

leading stars … “What is a Tree?” 

In New York I was gripped by the “Visionary Talks” which were held at lunchtimes 

during the conference.  I managed to see two, from leading women in science and

engineering, who talked eloquently about their journey to their current position, the

challenges they had met on the way and their visions for education in engineering. 

It is to be hoped that innovations like these are repeated at future conferences of

IACM and ECCOMAS.

All change at UKACMAll change at UKACM

My three-year term as President of UKACM comes to an end this

December and I am delighted to inform readers that Dr Rubén Sevilla
of Swansea University is to be the next President.  I am confident he will

continue to raise the profile of the UK in IACM and other organisations

and wish him well.

Join us for our annual conference in London this April!Join us for our annual conference in London this April!
From the Conference Chair: Professor Roger Crouch, Dean of the
School of Mathematics, Computer Science and Engineering

The 27th Annual UKACM conference will take place on 10-12 April 2019
at City, University of London.  The venue will be in the heart of London, at the University’s

Northampton Square Campus, to the north of the Clerkenwell’s highly-creative design 

district.  We very much look forward to being your hosts in the capital city and strongly

encourage you all to join us for the conference dinner on the 11th April. 

The 2019 UK conference will provide the opportunity for researchers in the rich 

and extraordinarily successful field of computational mechanics to: (i) present and

their most recent innovations, (ii) exchange ideas with colleagues and (iii) explore 

collaborative research opportunities.  The gathering follows the fine tradition of annual

meetings started in Swansea in 1993.  We warmly welcome all; most particularly

early-career researchers who are perhaps studying for their MRes/MPhil/PhD, but

have yet to showcase their findings to a wider audience.  The scope will encompass

not just solid and fluid mechanics, but also the underpinning numerical methods for

efficient large scale computation, error analysis and optimisation.  In 2019 we might

expect to see contributions that link new developments in AI/machine learning to 

computational mechanics.  The programme for the 3-day conference will be

announced in the autumn of 2018 so please look out for the call for papers. l

Figure 1:
Glasgow Appreciation

Dinner Venue

Figure 2:
Mané Harutyunyan 

presenting at the 
Science Slam, Glasgow
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GIMC & GMA Meeting in FerraraGIMC & GMA Meeting in Ferrara

The AIMETA Computational Mechanics and Material Groups (GIMC & GMA) are

pleased to announce

that the conference

GIMC-GMA 2018, 

held in Ferrara on

September 13-14 2018,

was very successful 

and had a large 

turnout:

- Over 120 participants, from Italian and foreign Universities;

- Over 95 presentations organized in parallel GIMC and GMA sessions;

- Two invited lectures given by Professor Franco Brezzi and by

Professor Marino Arroyo;

- A special session devoted to the presentation of the PhD theses in 

Computational Mechanics and in Mechanics of Materials winner of the GIMC 

and GMA awards.

- A special session in honor of Professor Antonio Tralli.

Details on the meeting can be found at the web site

https://gimc2018.sciencesconf.org/ l

Grouppo Italiano di

Meccanica Computazionale

for all inclusions under GIMC please contact 
Anna Pandolfi 

anna.pandolfi@polimi.it

GIMC Best PhD Thesis AwardGIMC Best PhD Thesis Award

The GIMC Best PhD Thesis Awards committee, composed by Paolo Bisegna (Roma Tor Vergata University), Stefano

De Miranda (Bologna University), and Alessandro Veneziani (Emory University, Atlanta, USA), selected the following

thesis defended during the 2017 year: 

- Dr. Paolo Di Re, La Sapienza University of Roma, “3D beam-column finite elements under tri-axial stress-strain
states: non-uniform shear stress distribution and warping” for the Computational Solid Mechanics Award

- Dr. Francesco Fambri, Trento University, “Discontinuous Galerkin methods for compressible and 
incompressible flows on space-time adaptive meshes” for the Computational Fluid Mechanics Award.

Previous recipients of the GIMC Best PhD Thesis Award are:

2017 Nicola Nodargi Incremental energy minimization and mixed finite element formulations for the analysis 

of inelastic structures (Solids)

2017 Andrea Montanino, The modified finite particle method in the context of meshless methods (Fluids)

2016 Davide Grazioli, Multiscale and multiphysics modeling of Li-Ion battery cells (Solids)

2016 Walter Boschieri, High order direct arbitrary-lagrangian-eulerian (ALE) finite volume schemes for 

hyperbolic systems       on unstructured meshes (Fluids)

2015 Giulia Scalet, Shape memory and elastoplastic materials: from constitutive and numerical to fatigue 

modeling

2014 Rossana Dimitri, Isogeometric treatment of large deformation contact and debonding problems 

with NURBS and T-splines l
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USACM Upcoming Events USACM Upcoming Events 
further details at usacm.org

m 15th U.S. National Congress on Computational Mechanics
Austin, TX, July 28-August 1, 2019; http://15.usnccm.org

m Uncertainty Quantification in Computational Solid and Structural Materials Modeling
Baltimore, MD, January 17-18, 2019; http://uq-materials2019.usacm.org (TTA on Uncertainty Quantification)

m Topology Optimization Roundtable
Albuquerque, NM, March 10-13, 2019; http://paulino.ce.gatech.edu/TopOpt%20Workshop%20Website/ 
(TTA on Large Scale Structural Systems and Optimal Design) l

Figure 1:
Beginning of a 

technical session in 
La Fonda on the Plaza

Figure 2:
Plenary speaker 

Jerry Brackbill presenting

Figure 3:
Conference dinner

Figure 4:
Poster session presenters

Thematic Conference on Meshfree and Particle Methods: Thematic Conference on Meshfree and Particle Methods: 
Applications and TheoryApplications and Theory

Conference Website: http://mfpm2018.usacm.org

The USACM Thematic Conference on Meshfree and Particle Methods: Applications

and Theory was held at the historic La Fonda on the Plaza in Santa Fe, New

Mexico, September 10-12, 2018.  The conference was supported by the Technical

Thrust Area (TT) of USACM on Novel Methods in Computational Engineering

and Science and organized by Jacob Koester and Joe Bishop (Sandia National

Laboratories), Duan Zhang (Los Alamos National Laboratory, Deborah Sulsky (University

of New Mexico), and Bo Li (Case Western Reserve).

The conference sought to build a stronger connection between the computational

mechanics communities working on novel methods and the communities working 

on applications and experimentation.  The exchange of ideas enriched method 

development by cross-pollinating ideas between various computational methods by

keeping researchers informed on the current application needs.  The following focus

areas were a part of the program: Penetration and Perforation, Shock and

Hydrodynamics, Advanced Manufacturing, Rapid Design-to-Analysis, Geoscience and

Natural Disasters, Fluid-Structure Interaction and Other Coupled Problems, Multi-Scale,

Implementation and High-Performance Computing, Mathematical Theory and Method

Development, Comparison of Related Methods, and Damage and Fracture.  

With nearly 90 attendees, the Thematic Conference featured five Plenary Lectures

(delivered by Steve Attaway, Jerry Brackbill, Sergio Idelsohn, N. Sukumar, and Dondong

Wang), 70 talks and 22 posters by students and post-doctoral fellows during an informal

poster session.  Participants were also able to network during an opening reception,

lunch, breaks and the conference banquet which featured Joseph Teran, who presented

an entertaining use of particle methods in movie animation.

The Organizers would like to thank all the Thematic Session organizers and the 

conference participants for their efforts in delivering a high-quality technical program. l
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for all inclusions under USACM please contact
info@usacm.org

IGA 2018:  IGA 2018:  
Isogeometric Methods – Integrating Design and AnalysisIsogeometric Methods – Integrating Design and Analysis

Conference Website: http://iga2018.usacm.org/

October 10th to 12th, 2018, the third ICES (Institute for Computational

Engineering and Sciences) and USACM (United States Association

for Computational Mechanics) Thematic Conference, IGA 2018:

Isogeometric Analysis: Integrating Analysis and Design, was held at the

outstanding AT&T Conference Center (http://www.meetattexas.com) on

the campus of the University of Texas at Austin.  The local organizer and

conference chair was Tom Hughes.  The Steering Committee consisted

of Ferdinando Auricchio, Yuri Bazilevs, David Benson, Tor Dokken,

Trond Kvamsdal, Alessandro Reali, and Jessica Zhang.

Despite hurricane Michael at the time in the United States, which severely

impacted air travel, the conference was very well attended.  There were

150 registrants including 46 doctoral and 8 post-doctoral students.

Expanding the format of the first two conferences in Austin in 2011 and

2014, there were 122 presentations of one-half hour each, and three simultaneous

parallel sessions on October 10th and four simultaneous parallel session on both

October 11th and 12th.  In addition, for the first time, an Industrial Panel discussion

was held, with 28 representatives from 15 companies that attended from the finite 

element analysis industry, as well as end user, preprocessor, mesh generation, and

computational model development companies.  A student/postdoc  poster competition,

sponsored by Corefrom, LLC, was held and there were 12 entries.  Professors Bjorn

Engquist and Omar Ghattas served as judges.  The three winners, who received

award certificates and cash prizes, were:  

First place, $1,000, Mattia Tani, University of Pavia:  

"The wonders of continuity:  When Cp-1 IGA is faster than C0 FEA"

Second place, $500, Aishwarya Pawar, Carnegie Mellon University:  

"DTHB3D_Reg: Dynamic Truncated Hierarchical B-splines Based 3D 

Nonrigid Image Registration"

Third place, $250, Roel Tielen, Delft University of Technology:  

"Efficient p-Multigrid Methods for Isogeometric Analysis."

The conference was highlighted by considerable time for the attendees to interact 

and exchange ideas during extended breaks, organized breakfasts and lunches 

each day, and enjoyable social events, including a welcome reception the night before

the conference, a reception during the poster competition the first evening of the 

conference, a gala banquet the second evening, and a closing dinner the third night.

Isogeometric Analysis has become a focal point of research in the CAGD (Computer

Aided Geometric Design) and FEA (Finite Element Analysis) communities, and now 

has gained considerable traction in industry.  It was clear from the many excellent 

presentations that incredible progress has been made and that the goal of Isogeometric

Analysis, to fully integrate geometric design and engineering analysis, and thereby

eliminate an enormous bottleneck in product development presently accounting for

more than 80% of overall analysis time, is well on its way to being achieved.  l
Thomas J.R. Hughes

Austin, October 15, 2018

Figure 5:
Conference Poster

Figure 7:
The Austin, Texas skyline,
site of IGA 2018

Figure 6:
Tom Hughes and the 
poster contest prize winners.
From left to right, 
Roel Tielen, Tom Hughes,
Mattia Tani, and 
Aishwarya Pawar.
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During the past year the Israel Association for Computational Methods in

Mechanics (IACMM) held two symposia.  The 43rd Israel Symposium on

Computational Mechanics (ISCM-43) was held in Oct 2017 at Tel-Aviv University,

organized by Profs. Isaac Harari and Slava Krylov.  The interesting opening lecture

was given by the international invited speaker Prof. Manfred Bischoff from the

University of Stuttgart, Germany, titled “Rotation-free parameterization and isogeo-

metric discretization of shear deformable shells”.  Figure 1 shows Prof. Bischoff

lecturing.  The symposium included 11 other lectures, presented by practitioners and

researchers from industry and academia.  These included among others talks by

Prof. Slava Krylov (Actuation of higher harmonics in large arrays of micromechanical

cantilevers for expanded resonant peak separation), Prof. Yair Shokef (Geometrically

frustrated mechanical metamaterials) both from Tel Aviv University, Dr. Pavel Trapper

(Unified numerical analysis of pipe-lay on a seabed with nonlinear stiffness), from

Ben-Gurion University and Dr. Regina Katsman (Fracture-driven methane bubble

ascent within shallow fine-grained clay-bearing aquatic sediments: dynamics and

controlling factors) from the University of Haifa.  Figure 2 shows Prof. Krylov during

his talk. Ms. Dana Bishara, a PhD student of Prof. Mahmood Jabareen from the

Technion was the winner of the ISCM-43 competition for the best presentation – the

title of her talk was "An advanced finite element formulation for modeling electro-

active polymers".  Figure 3 is a group photo of the Invited speaker with the IACMM

executive council.

The 44th IACMM Symposium was held in March 2018 at the Ben-Gurion University,

organized by Prof. Erez Gal and Dr. Yuri Feldman.  The delightful opening lecture

was given by the international invited speaker Prof. Stefan Hartmann from the

Clausthal University of Technology, Germany, titled “Two decades of the method of

Israel Association for Computational Methods in Mechanics

Figure 1:
Prof. Bischoff delivering the

invited lecture at the ISCM-43,
Oct 2017, TAU, Tel-Aviv

Figure 3:
Group photo of IACMM 

executive council and 
international speaker at 

ISCM-43, 
at the Tel-Aviv University. 

Left to Right (Up): 
Z. Yosibash, J. Tal 
(Down): D. Givoli, 

A. Herszage, I. Harari, 
M. Bischoff, M. Jabareen, 
P. Bar-Yoseph, S. Krylov

Figure 2:
Prof. Slava Krylov during his

talk at ISCM-43
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vertical lines in non-linear finite elements”.  Prof. Hartmann also gave a tutorial on

“Aspects of material parameter identification in solid mechanics”.  Figure 4 shows

Prof. Hartmann lecturing and answering questions.  Nine additional presentations

were given at ISCM-44, including a talk by Prof. Timo Saksala from the Tempre

University of Technology, Finland (Numerical modeling of rock fracture using 

polygonal final elements), a talk by Dr. Elad Priel from the SCE, Israel (A 

computational study of molybdenum equal channel angular pressing validated 

by experiments), and the presentation by Dr. Yaniv Brick, a young EE faculty 

member at Ben-Gurion University, was elected as the best presentation at ISCM-44,

titled "Fast low rank approximation of oscillatory kernel integral equation-based 

off-diagonal matrix blocks ".  Figure 5 shows Dr. Brick during his talk and Figure 6

is a group photo of the Invited speaker with the IACMM executive 

council and some of the speakers at ISCM-44.

The first prize winner of the best presentation at ISCMs in 2017,

Ms. Dana Bishara, and the second prize winner, Ms. Hanan Amar,

received an IACMM certificate awarded by IACMM president Prof.

Zohar Yosibash during the assembly meeting of IACMM held at

ISCM-44.  Figure 7 shows Ms. Bishara and Prof. Yosibash during

the awarding ceremony. Being the first prize winner, Ms. Bashara

was awarded a financial support by the IACMM to present her talk

at the WCCM 2018 conference held in July 2018 in New-York. l

For all inclusions under IACMM
please contact:

Zohar Yosibash
yosibash@tauex.tau.ac.il

Figure 4: 
Hartmann delivering the invited lecture of the
ISCM-44, March 2018, Ben-Gurion University

Figure 5: 
Dr. Yaniv Brick the winner 
of the ISCM-44 best 
presentation, during his talk

Figure 7: 
Ms. Dana Bishara receiving the certificate on best presentation in 2017 from Prof. Yosibash (president of IACMM) 

during the General Assembly of the IACMM at ISCM-44

Figure 6: 
IACMM executive council, 
the international speaker,
organizers and some of the
speakers at ISCM-44, at the
Ben-Gurion University. 
Left to Right: P. Bar-Yoseph,
M. Engelman, Z. Yosibash, 
S. Krylov, D. Givoli, S. Hartmann,
P. Trapper, Y. Feldman, 
I. Harari, A. Herszage, Y. Brick
and E. Gal
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4th Association of Computational Mechanics Taiwan 4th Association of Computational Mechanics Taiwan 
(ACMT) Conference(ACMT) Conference

4th ACMT Conference Organizing Committee: 

The Association of Computational Mechanics Taiwan (ACMT) was founded in 

2007 to strengthen the development and collaboration between researchers in 

the field of computational mechanics in Taiwan.  Many members of ACMT are 

also regular minisymposium organizers and speakers for WCCM and APCOM

events.  Starting from 2015, ACMT holds an annual meeting on October to 

furthermore promote the field of computational mechanics in Taiwan.  The fourth

conference of the association was a joint conference held in Yilan, Taiwan in 

conjunction with the second International Conference on Mechanics, the 12th

Asian Computational Fluid Dynamics Conference, 25th National Computational

Fluid Dynamics Conference during October 15-18, 2018.  The event attracted

more than 250 participants from universities, research institutes and industries. 

In addition to domestic participants from Taiwan, plenary, semi-plenary, keynote

speakers and participants from USA, UK, Japan, China, Korea etc. attended 

the conference.

I-Ling Chang
ilchang@mail.ncku.edu.tw
Conference Co-Chair
Executive Council 
Member - ACMT

YB Yang 
ybyang@ntu.edu.tw
President - ACMT

CA Lin
calin@pme.nthu.edu.tw
Vice President - ACMT

CS David Chen
dchen@ntu.edu.tw
Secretary General -
ACMT

Ching-Yao Chen
chingyao@mail.nctu.edu.tw
Conference Chair
Executive Council 
Member - ACMT

Figure 1:
Opening by Prof. Chao-An Lin

Figure 2:
Plenary speech by Prof. Yue Yang

Figure 3:
Plenary speech by Dr. Chen-Tang Wu

Figure 4:
Plenary speech by Prof. Eckart Meiburg
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The ACMT conference emphasizes on the synthesis of computational solid

mechanics and computational fluid mechanics communities in Taiwan.  This year 

it featured 9 plenary speeches, 2 from computational solid mechanics and 7 

from computational fluid mechanics.  The plenary speeches were given by 

Prof. Michael Leschziner (Imperial College) on influence of outer large-scale 

structures on wall friction, Prof. Yue Yang (Peking University) on evolution of 

vortex-surface fields, Dr. Chen-Tang Wu (LTSC) on computational modeling of

materials failure, Prof. Eckart Meiburg (University of California, Santa Barbara) 

on double-diffusive sedimentation, Prof. Kawnjung Yee (Seoul National University)

on numerical simulation for aircraft icing, Pro. Gour-Tsyh Yeh (National Central

University) on CFD with MMOC approaches, Prof. Makoto Tsubokura (Kobe

University) on unified simulation framework for continuum mechanics, 

Prof. Jyh-Chen Chen (National Central University) on numerical simulative 

application on silicon crystal growth, and Prof. Kuo-Ning Chiang (National Tsing

Hua University) on failure life prediction with AI technology, respectively.  

The conference also featured 6 session keynote lectures, 13 invited symposia,

163 oral presentations and 28 posters.  There were 20 sessions for topics of 

methods and applications related to various aspects of computational mechanics

and interdisciplinary topics, including, bio-medical applications, materials modeling,

fluid-structure interaction, materials genome, etc.  We also took this opportunity to

host ACMT executive council and general council meetings.  All the members are

very excited about the growth prospect of the association. 

The 4th ACMT Conference was a great success.  We appreciate the support 

of plenary and semi-plenary speakers, keynote speakers, the minisymposia 

organizers and strong involvement of the participants. 

The 5th ACMT Conference will be held in conjunction with the 7th Asia-Pacific
Congress on Computational Mechanics (APCOM) on December 18-21, 2019.

We look forward to the coming event and opportunities to give impetus for a strong

computational mechanics community in Taiwan.  l

for all inclusions under ACMT please contact
David Chen

dchen@ntu.edu.tw

Figure 5, 6 and 7:
ACMT Executive and General Council Meetings
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Uncertainty Quantification in Computational Solid and Structural Materials Modeling
Venue: Baltimore, Maryland Contact: http://uq-materials2019.usacm.org

FEF-2019  - Finite Elements in Fluids
Venue: Chicago, IL  Contact: http://www.fef2019.org/

UKACM2019 - UK Association for Computational Mechanics
Venue: London, UK  Contact: http://ukacm.org/

MARINE 2019 - VIII International Conference on Computational Methods in Marine Engineering
Venue: Gothenburg, Sweden Contact: http://congress.cimne.com/marine2019/

IPM 2019 - 5th Int.l Conference on Inverse Problems in Mechanics of Structures & Materials
Venue: Rzeszow, Poland Contact: https://ipm.prz.edu.pl/

ADMOS VIII -  International Conference on Adaptive Modeling and Simulation
Venue: Campello (Alicante), Spain Contact: http://congress.cimne.com/admos2019/

COUPLED PROBLEMS -VIII Int. Conference on Coupled Problems in Science & Engineering
Venue: Barcelona, Spain Contact: http://congress.cimne.com/coupled2019/

6th International Conference on Computational and Mathematical Biomedical Engineering
Venue: Sendai City, Japan Contact: http://www.compbiomed.net/2019/

CFRAC - 6th Int. Conf. on Computational Modeling of Fracture & Failure of Materials & Structures
Venue: Braunschwei,  Germany Contact: http://congress.cimne.com/cfrac2019

COMPDYN - 7th Int. Conf. on Computational Methods in Structural Dynamics & Earthquake Engineering
Venue: Creta, Greece Contact: https://2019.compdyn.org

UNCECOMP - 3rd Int. Conf. on Uncertainty Quantification in Computational Sciences & Engineering
Venue: Creta, Greece Contact: https://2019.uncecomp.org/

CMN 2019 - Congreso de Métodos Numéricos en Ingeniería 
Venue: Guimarães, Portugal Contact: http://www.cmn2019.pt/index.php/pt/

M-FET 2019 - 2nd Modern Finite Element Technologies - Mathematical & Mechanical Aspects
Venue: Bad Honnef, Germany Contact: http://mfet2019.de/

MULTIBODY 2019 - Multibody Dynamics
Venue: Duisburg, Germany Contact: https://www.uni-due.de/eccomasmultibody2019/

USNCCM 15 - 15th US National Congress on Computational Mechanics
Venue: Austin, TX Contact: http://15.usnccm.org/

YIC 2019 - Eccomas Young Investigators Conference
Venue: Cracow, Poland Contact: http://www.ptmkm.pl/pl/node/134

COMPLAS 2019 - XIV International Conference on Computational Plasticity
Venue: Barcelona, Spain Contact: http://congress.cimne.com/complas2019/

PCM-CMM 2019 - 4th Polish Congress of Mechanics & 
23rd International Conference on Computer Methods in Mechanics
Venue: Krakow, Poland Contact: http://pcm-cmm2019.com/

Sim-AM 2019 - II International Conference on Simulation for Additive Manufacturing
Venue: Pavia, Italia Contact: http://congress.cimne.com/sim-am2019/

EUROGEN 2019 - Int. Conf. on Evolutionary & Deterministic Methods for Design, Optimization & Control
Venue: Guimarães, Portugal Contact: http://eurogen2019.dep.uminho.pt/

IGA 2019 - VI International Conference on Isogeometric Analysis
Venue: Munich, Germany Contact: http://congress.cimne.com/IGA2019/

COMPOSITES 2019 - VII Conference on Mechanical Response of Composites
Venue: Girona, Spain Contact: http://composites2019.udg.edu/

Form & Force - joint 60th IASS Symposium 2019 & 8th Structural Membranes 2019
Venue: Barcelona, Spain Contact: http://congress.cimne.com/Formandforce2019/

3rd Int. Conf. on Recent Advances in Nonlinear Design, Resilience & Rehabilitation of Structures
Venue: Coimbra, Portugal Contact: https://corass2019.dec.uc.pt/

PARTICLES 2019 - VI International Conference on Particle-Based Methods
Venue: Barcelona, Spain Contact: http://congress.cimne.com/particles2019/

APCOM 2019 - 7th Asian Pacific Congress on Computational Mechanics
Venue: Taipei, Taiwan Contact: http://www.apcom2019.org/

ECCOMAS CONGRESS 2020 jointly organized with the

WCCM XIV - 14th World Congress on Computational Mechanics (IACM) 
Venue: Paris, France Contact: http://www.eccomas.org/

conference d iary  p lanner
17 - 18 Jan 2019

31 Mar. - 3 Apr. 2019

10 - 12 April 2019

13 - 15 May 2019

22 - 24 May 2019

27 - 29 May 2019

3 - 5 June 2019

10 - 12 June 2019

12 - 14 June 2019

24 - 26 June 2019

24 - 26 June 2019

1 - 3 July 2019

1 - 3 July 2019

15 - 18 July 2019

28 Jul. - 1 Aug. 2018

1 - 6 Sept. 2019

5 - 7 Sept 2019

8 - 12 Sept. 2019

11 - 13 Sept. 2019

12 - 14 Sept. 2019

18 - 20 Sept. 2019

18 - 20 Sept. 2019

7 - 10 Oct. 2019

16 - 18 Oct. 2019

28 - 30 Oct. 2019

18 - 21 Dec. 2019

19 - 24 July 2020


